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Abstract

This paper deals with the estimation of stress strength reliability parameter R, which is the probability
of Y less than X when X and Y are two independent distribution with different scale parameter and same
shape parameter. The maximum likelihood method is used to find an estimator for R. We also obtain the
asymptotic distribution of the maximum likelihood estimator of R. Based on this asymptotic distribution,
the asymptotic confidence interval can be obtained. We also propose bootstrap confidence interval for
the parameter R. Analysis of a simulated data and a real life data have been presented for illustrative
purposes.

Keywords: stress strength model, maximum-likelihood estimator, bootstrap confidence intervals,
asymptotic distributions and confidence interval

1. Introduction

One of the significant, challenging, but manageable problems in reliability analysis is the calcula-
tion of stress-strength reliability using a variety of distributions. Estimating the stress-strength
parameter, R, is very helpful in the statistical literature. For instance, if X represents the strength
of a system under a stress, Y, then R is a measure of system performance that arises naturally from
the mechanical dependability of a system. Only when the applied stress exceeds the system’s
strength at any point does the system fail. Many lifespan distributions are utilised in reliability
analysis. Terms like exponential, Weibull, log-Normal, and their generalisations are commonly
used in dependability analysis. The exponential, Lindley, and Weibull distributions are more
often used than the gamma and lognormal distributions because their survival functions can
both be expressed in closed forms and do not require numerical integration. While sharing a
common parameter, the exponential and Lindley distributions differ in that the hazard rate of
the exponential is constant whereas the hazard rate of the Lindley is monotonically dropping.
Although the Lindley distribution has been used by many academics to model lifetime data and
is crucial for understanding stress-strength reliability modelling, there are numerous instances
in which modelling actual lifetime data may not be appropriate from a theoretical or practical
standpoint. Recently, a number of academics presented many distributions, with the new ones
showing a better fit than the currently popular distributions. In order to fix a problem with new
models while utilising better fitted models in stress-strength analysis, one may need to carefully
examine the estimation process. If the estimation process fails using the available methodologies,
one may not be able to do so. Therefore, it is crucial to estimate multiple reliability factors, and
researchers must focus more on estimates while utilising better fitted models.
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In the literature, it has been debated how to estimate a stress strength model’s reliability
or survival probability when X and Y have known distributions. A number of authors have
examined the survival probabilities of a single component stress-strength (SSS) model for various
distributions, including Raqab and Kundu[12], Kundu and Gupta [9], [6], Constantine and
Karson[4], and Downtown[5]. The issue of estimating R has been investigated by a number
of authors. Church and Harris [3] developed the MLE of R when X and Y are independently
and normally distributed. Awad et al study’s on the MLE of R under the condition that X
and Y have bivariate exponential distributions was published in 1981. In a simulation research,
Awad and Gharraf [2] compared three estimations of R when X and Y are independent Burr
random variables with different distributions. Estimates for R where X and Y are Burr Type X
distributions were reported by Ahmad et al.[1] and Surles and Padgett[16],[17]. Other papers
which describes the same idea on different distributions are Akhila and Chacko [18],Kundu
and Raqab [11],saraccouglu,Kinaci and Kundu [14] and Shahsanaei, Fatemeh and Daneshkhah,
Alireza [15].

In this paper, we consider the problem of estimating the stress strength parameter R = P[Y <
X], when X and Y be independent strength and stress random variables having Pranav distribution
with parameters θ1 and θ2 respectively. Krishna Kumar Shukla [8]introduced Pranav distribution
which is a mixture of two distributions, exponential distribution having scale parameter θ and
gamma distribution having shape parameter 4 and scale parameter θ, and their mixing proportion
of θ, θ4

θ4+6 and 6
θ4+6 respectively. The probability density function (pdf) of Pranav lifetime

distribution can be defined as

f (x, θ) =
θ4

θ4 + 6
(θ + x3)e−θx, x > 0, θ > 0 (1)

The corresponding cumulative distribution function(c.d.f) is

F(x, θ) = 1 −
[

1 +
θx(θ2x2 + 3θx + 6

θ4 + 6

]
e−θx, x > 0, θ > 0 (2)

The estimation of the stress strength parameter R = P[Y < X], when X and Y are both one-
parameter Pranav distributions with parameter θ1 and θ2 respectively, is an unsolved problem.
Statistical inference on stress-strength parameters are important in reliability analysis. It is
observed that the maximum likelihood estimators can be obtained implicitly by solving two
nonlinear equations, but they cannot be obtained in closed form. So, MLE’ s of parameters
are derived numerically. It is not possible to compute the exact distributions of the maximum
likelihood estimators, and we used the asymptotic distribution and we constructed approximate
confidence intervals of the unknown parameters.

The rest of the paper is organized as follows. In Section 2, the MLE of R is computed. The
asymptotic distribution of the MLE’ s are provided in Section 3. Bootstrap confidence interval is
presented in Section 4. In Section 5, simulation study is given. Theoretical results are verified by
analyzing data set in Section 6 and conclusions are given in Section 7.

2. Maximum Likelihood Estimator of R

In this section, the procedure of estimating the reliability of R = P[Y < X] models using Pranav
distributions, is considered. It is clear that

R = P[Y < X]

=
∫ ∞

0
f (x, θ1)F(x, θ2) dx (3)

where f (x,y), is the joint probability density function (pdf) of random variables X and Y, having
Pranav distributions. If the r.v’ s X and Y are independent, then f (x, y) = f (x)g(y), where f (x)
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and g(y) are the marginal pdf’ s of X and Y, so that

R =
∫ ∞

0

(
θ4

θ4 + 6
(θ + x3)e−θx

)(
1 −

[
1 +

θx(θ2x2 + 3θx + 6
θ4 + 6

]
e−θx

)
dx (4)

On simplification we get

R = 1 −

θ1


360θ1θ2

2 + 1080θ3
2 + 144θ2(θ1 + θ2)

2+
6(θ1θ3

2 + θ4
2 + 6)(θ1 + θ2)

3+
6(θ1θ2)

2(θ1 + θ2)
4 + 6θ1θ2(θ1 + θ2)

5+
θ1(θ

4
2 + 6)(θ1 + θ2)

6


(θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7

(5)

If we have two ordered random samples representing strength (X1,X2...Xn) and stress (Y1,Y2,....,Ym)
having sizes n and m respectively, following Pranav distribution with parameters θ1 and θ2, re-
spectively. A technique for figuring out a model’s parameter values is called maximum likelihood
estimation. The parameter values were selected to maximise the likelihood that the model’s
described process resulted in the observed data. The optimal distribution for a collection of
data is chosen using the maximum likelihood estimate (MLE). A reliable method for estimating
parameters is maximum likelihood. So, a variety of estimation scenarios can apply maximum
likelihood estimations. With those parameter values, the likelihood of those observed outcomes
is the same as the probability of those observed events. Thus, the likelihood function for the
combined random sample can be calculated:

L =
n

∏
i=1

θ4
1

θ4
1 + 6

(θ1 + x3
i ) e−θ1x3

i

n

∏
j=1

θ4
2

θ4
2 + 6

(θ2 + y3
j )e

−θ2y3
j (6)

the log likelihood is

l = logL = 4nlogθ1 − nlog(θ4
1 + 6) +

n

∑
i=0

(log(θ1 + x3
i ))− θ1

n

∑
i=0

xi

+ 4mlogθ2 − mlog(θ4
2 + 6) +

m

∑
j=1

(log(θ2 + y3
j ))− θ2

m

∑
j=1

yj (7)

The solution of the following non-linear equations yield the MLE of the parameters parameters θ1
and θ2. Differentiating (7) with respect to parameters θ1 and θ2, we obtain

∂l
∂θ1

=
4n
θ1

−
4nθ3

1
(θ4

1) + 6
+

n

∑
i=0

1
θ1 + x3

i
−

n

∑
i=0

xi (8)

∂l
∂θ2

=
4m
θ2

−
4mθ3

2
(θ4

2) + 6
+

m

∑
j=0

1
θ2 + x3

j
−

m

∑
j=0

yj (9)

The second partial derivatives of (7) with respect to parameters θ1 and θ2, are

∂l2

∂θ2
1
=

−4n
θ2

1
−

4nθ2
1(18 − θ4

1)

(θ4
1 + 6)2

−
n

∑
i=0

1
(θ1 + x3

i )
2

(10)

∂l2

∂θ2
2
=

−4m
θ2

2
−

4mθ2
2(18 − θ4

2)

(θ4
2 + 6)2

−
m

∑
j=0

1
(θ2 + y3

j )
2

(11)

MLE of R is obtained as

R̂ = 1 −

θ̂1

 360θ̂1(θ̂2
2
+ 1080θ̂2

3
+ 144θ̂2(θ̂1 + θ̂2)

2+

6(θ̂1θ̂2
3
+ θ̂2

4
+ 6)(θ̂1 + θ̂2)

3 + 6(θ̂1θ̂2)
2(θ̂1 + θ̂2)

4+

6θ̂1θ̂2(θ̂1 + θ̂2)
5 + θ̂1(θ̂2

4
+ 6)(θ̂1 + θ̂2)

6


(θ̂1

4
+ 6)(θ̂2

4
+ 6)(θ̂1 + θ̂2)7

(12)
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Where θ̂1 and θ̂2 are the maximum likelihood estimators of θ1 and θ2 respectively. This is used in
estimation of stress strength for given data.

3. Asymptotic Distribution and Confidence Interval

The asymptotic distribution and confidence interval of the MLE of R are obtained in this section.
To find an asymptotic variance of the MLE R̂ML, let us denote the Fisher information matrix of
θ = (θ1, θ2) as I(θ) = [Ii j(θ); i, j = 1, 2], i.e.,

I(θ) = E

 −∂2l
∂θ2

1

−∂2l
∂θ1∂θ2

−∂2l
∂θ2∂θ1

∂2l
∂θ2

2

 (13)

To establish normality assumption we define

d(θ) = (
∂R
∂θ1

,
∂R
∂θ2

)
′

(14)

= (d1, d2)
′

(15)

R is in the form
R = 1 − U

V
P (16)

Hence
∂R
∂θi

= −
[
(

U
V
)
′
P + P

′ U
V

]
, i = 1, 2 (17)

U = θ1 (18)

V = (θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
7 (19)

P = 360θ̂1(θ̂2
2
+ 1080θ̂2

3
+ 144θ̂2(θ̂1 + θ̂2)

2+

6(θ̂1θ̂2
3
+ θ̂2

4
+ 6)(θ̂1 + θ̂2)

3 + 6(θ̂1θ̂2)
2(θ̂1 + θ̂2)

4+

6θ̂1θ̂2(θ̂1 + θ̂2)
5 + θ̂1(θ̂2

4
+ 6)(θ̂1 + θ̂2)

6 (20)

The partial derivatives of U
V and P with respect to θ1 is

∂P
∂θ1

= 360θ2
2 + 288θ2(θ1 + θ2) + 18θ1θ3

2 + (θ1 + θ2)
2+

6θ3
2(θ1 + θ2)

3 + 18θ2(θ1 + θ2)
2 + 18(θ1 + θ2)

2+

24(θ1θ2)
2(θ1 + θ2)

3 + 12θ1θ2
2(θ1 + θ2)

4 + 30θ1θ2(θ1 + θ2)
4+

6θ2(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + (θ4
2 + 6)(θ1 + θ2)

6 (21)

(
U
V
)
′
=

 (θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
7−

7θ1(θ
4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
6−

4θ4
1(θ

4
2 + 6)(θ1 + θ2)

7


[(θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7]2

(22)
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Then partial derivative of R with respect to θ1 becomes

∂R
∂θ1

= −

[
−7θ1(θ

4
2 + 6)(θ4

2 + 6)(θ1 + θ2)
6 − 4θ4

1(θ
4
2 + 6)(θ1 + θ2)

7+
(θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)

7

]
((θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7)2

×

 360θ1θ2
2 + 1080θ3

2 + 144θ2(θ1 + θ2)
2+

6(θ1θ3
2 + θ4

2 + 6)(θ1 + θ2)
3 + 6(θ1θ2)

2(θ1 + θ2)
4+

6(θ1θ2)
2(θ1 + θ2)

4 + 6θ1θ2(θ1 + θ2)
5 + θ1(θ

4
2 + 6)(θ1 + θ2)

6



+


360θ2

2 + 288θ2(θ1 + θ2) + 18θ1θ3
2(θ1 + θ2)

26θ3
2(θ1 + θ2)

3+
18θ2(θ1 + θ2)

2 + 18(θ1 + θ2)
2 + 24(θ1θ2)

2(θ1 + θ2)
3

+12θ1θ2
2(θ1 + θ2)

4 + 30θ1θ2(θ1 + θ2)
4+

6θ2(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + (θ4
2 + 6)(θ1 + θ2)

6


× θ1

(θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)7
(23)

The partial derivatives of U
V and P with respect to θ2 is

∂P
∂θ2

= 720θ1θ2 + 3240θ2
2 + 288θ2(θ1 + θ2) + 144(θ1 + θ2)

2

+ 18θ1θ3
2(θ1 + θ2)

2 + 18θ1θ2
2(θ1 + θ2)

3 + 18θ4
2(θ1 + θ2)

2 + 24θ3
2(θ1 + θ2)

3

+ 18(θ1 + θ2)
2 + 24(θ1θ2)

2(θ1 + θ2)
3 + 12θ2

1θ2(θ1 + θ2)
4 + 30θ1θ2(θ1 + θ2)

4

+ 6θ1(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + 4θ1θ3
2(θ1 + θ2)

6 (24)

(
U
V
)
′
= −

[
−7θ1(θ

4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
6 − 4θ1θ3

2(θ
4
1 + 6)(θ1 + θ2)

7]
((θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7)2

(25)

Then the partial derivative of R with respect to θ2 becomes

∂R
∂θ2

= −
[
−7θ1(θ

4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
6 − 4θ1θ3

2(θ
4
1 + 6)(θ1 + θ2)

7]
((θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7)2

×

 360θ1θ2
2 + 1080θ3

2 + 144θ2(θ1 + θ2)
2+

6(θ1θ3
2 + θ4

2 + 6)(θ1 + θ2)
3 + 6(θ1θ2)

2(θ1 + θ2)
4+

6(θ1θ2)
2(θ1 + θ2)

4 + 6θ1θ2(θ1 + θ2)
5 + θ1(θ

4
2 + 6)(θ1 + θ2)

6



+


720θ1θ2 + 3240θ2

2 + 288θ2(θ1 + θ2) + 144(θ1 + θ2)
2+

18θ1θ3
2(θ1 + θ2)

2 + 18θ1θ2
2(θ1 + θ2)

3 + 18θ4
2(θ1 + θ2)

2 + 24θ3
2(θ1 + θ2)

3+
18(θ1 + θ2)

2 + 24(θ1θ2)
2(θ1 + θ2)

3 + 12θ2
1θ2(θ1 + θ4

2) + 30θ1θ2(θ1 + θ2)
4+

6θ1(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + 4θ1θ3
2(θ1 + θ2)

6


× θ1

(θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)7
(26)

We obtain the asymptotic distribution of R̂ML as

√
n + m(R̂ML − R) → N(0, d

′
(θ)I−1(θ)d(θ)) (27)

AV(R̂ML) =
1

n + m
d
′
(θ)I−1(θ)d(θ) (28)

i.e, AV(R̂ML) = V(θ̂1)d2
1 + V(θ̂2)d2

2 + 2d1d2Cov(θ̂1, θ̂2) (29)

Asymptotic 100(1 − α) percentage confidence interval for R

R̂ML ± Zα/2

√
AV(R̂ML) (30)
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4. Bootstrap Confidence Interval

In this section, we use confidence intervals based on the parametric percentile bootstrap methods
(we call it from now on as Boot-p) based, [10]. Bootstrapping is a technique for estimating the
variability in a statistic by sampling with replacement from observed data. Permutation tests are a
type of re-sampling that is linked to re-sampling. The bootstrap is frequently used to evaluate the
accuracy of an estimate based on a sample of data from a larger population. The bootstrap’s main
advantage is that it allows statisticians to construct confidence intervals on parameters without
making irrational assumptions. This was one of the first of many discoveries in computational
statistics, which has now become the standard method for practically all work. It creates multiple
re-samples (with replacement) from a single set of observations, and computes the effect size of
interest on each of these re-samples. To estimate confidence intervals of R in this methods, the
following steps are used.

1. Estimate θ, say θ̂, from the sample using MLE method.

2. Generate a bootstrap sample using θ̂. Using these bootstrap sample obtain the bootstrap
estimate of θ, say θ̂∗ and compute the bootstrap estimate of R.

3. Repeat Step [2] N-BOOT times to get the parametric bootstrap estimates of R

4. Let ĈDF = P(θ̂∗ ≤ x), be the cumulative distribution function of R̂. Define θ̂Boot−p(x) =

ĈDF
−1

(x) for a given x. The approximate (100 − α)% confidence interval for θ is given by

(θ̂BOOT−P(α/2), θ̂BOOT−P(1 − (α/2))) (31)

5. Simulation Study

To measure the efficacy of R’s estimators, we provide some results based on the inversion method
in this section. According to its definition, data simulation is the process of using a significant
amount of data to replicate or simulate real-world settings in order to determine the optimal
course of action, predict future events, or test a model. The many forms of data simulations are
numerous. In simulation statistics, artificially generated data are used to test a hypothesis or
statistical method. Every time a new statistical method is created or used, certain assumptions
need to be verified. Simulated data is used by statisticians to test their theories. For this purpose,
we have generated 1000 samples from independent Pranav(θ1) and Pranav(θ2) distributions. We
considered sets of parameter values (1) and (1.99) parameter values. The bias and the mean
square error (MSE) of the parameter estimates are calculated. In Table 5.1, the average biases,
mean squared errors (MSE) and confidence intervals of the estimates of R is given.

Table 1: Simulation Results

(n,m) R(ML) Bias MSE AS(CI) BT(CI)

(7,7) 0.8982136 0.1017854 0.01036027 0.8783155,0.9181117 0.8947541,0.8999972
(15,15) 0.8982252 0.1017738 0.0103579 0.8782696,0.9181808 0.8966189,0.8994737
(20,20) 0.8982344 0.1017646 0.01035603 0.8783453,0.9181235 0.8965753,0.8999412
(22,22) 0.8985076 0.1014914 0.0103005 0.8787993,0.9182159 0.8969416,0.8993731
(25,25) 0.8985383 0.1014607 0.01029428 0.8789089,0.9181677 0.8973348,0.898984

From the simulation results, it is observed that as the sample size (n, m) increases the biases and
the MSE decrease. Thus the consistency properties of all the methods are verified.
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6. Data Analysis

In this section we present a data analysis of the strength data reported by Badar and Priest(1982).
The data represent the strength data measured in GPA, for single carbon fibers and impregnated
1000-carbon fiber tows. Single fibers were tested under tension at gauge lengths of 1, 10, 20 and
50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths of 20, 50, 150 and 300
mm. It is already observed that the Weibull model does not work well in this case. Surles and
Padgett[16], [17] and Raqab and Kundu[12] observed that generalized Rayleigh works quite well
for these strength data. For illustrative purposes we are also considering the same transformed
data sets as it was considered by Raqab and Kundu [9], the single fibers of 20 mm (Data Set I)
and 10 mm (Data Set II) in gauge lengths with sample sizes 69 and 63 respectively. They are
presented below:
Data Set I: 0.312 0.314 0.479 0.552 0.700 0.803 0.861 0.865 0.944 0.958 0.966 0.997 1.006 1.021 1.027
1.055 1.063 1.098 1.140 1.179 1.224 1.240 1.253 1.270 1.272 1.274 1.301 1.301 1.359 1.382 1.382 1.426
1.434 1.435 1.478 1.490 1.511 1.514 1.535 1.554 1.566 1.570 1.586 1.629 1.633 1.642 1.648 1.684 1.697
1.726 1.770 1.773 1.800 1.809 1.818 1.821 1.848 1.880 1.954 2.012 2.067 2.084 2.090 2.096 2.128 2.233
2.433 2.585 2.585
Data Set II: 0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 0.597 0.645 0.654 0.674 0.718 0.722 0.725
0.732 0.775 0.814 0.816 0.818 0.824 0.859 0.875 0.938 0.940 1.056 1.117 1.128 1.137 1.137 1.177 1.196
1.230 1.325 1.339 1.345 1.420 1.423 1.435 1.443 1.464 1.472 1.494 1.532 1.546 1.577 1.608 1.635 1.693
1.701 1.737 1.754 1.762 1.828 2.052 2.071 2.086 2.171 2.224 2.227 2.425 2.595 3.220
These data were first used by Badar and Priest(1982) and later used by Raqab and Kundu[13] and
Hassan and Kumaraswamy [7].

Table 2: Data Analysis Results

Length(in mm) MLE K-S statistic P-value

10 1.596362 0.62319 0.7571
20 1.715981 0.79365 0.4375

Table 6.1 gives the result of the goodness of fit test. Maximum likelihood estimates are
1.596362 and 1.715981.The estimated value of the stress strength reliability using these estimates
is 0.8850866.The 95% asymptotic confidence interval for R is (0.8530591,0.9171141) and 95%
bootstrap confidence interval for R is (0.8748553 ,0.8895613).

7. Conclusion

In this paper, we considered the problem of estimating stress strength reliability using Pranav
distribution. The maximum likelihood estimate of stress strength reliability, R̂ is obtained.
Also, asymptotic 100(1 − α)% confidence interval for the reliability parameter is computed.
Bootstrap confidence interval for the reliability parameter is also computed. When the sample
size is increased, mean square error caused by the estimates comes nearer to zero by extensive
simulation. Finally, real data sets are analyzed
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