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Abstract 

 

There are various circumstances where it is important to simultaneously monitor or control two or 

more related quality characteristics. Independently tracking these quality characteristics might be quite 

deceptive. Hotelling's T2 chart, in which the T2 statistics are generated using the classical estimates of 

location and scatter, is the most well-known multivariate process monitoring and control approach. It 

is well known that the existence of outliers in a dataset has a significant impact on classical estimators. 

Any statistic that is computed using the classical estimates will be distorted by even a single outlier. 

The non-robustness issue is investigated in this study, which also suggests four robust bivariate control 

charts based on the robust Gnandesikan-Kettenring estimator. This study employs four highly robust 

scale estimators, with the best breakdown point, namely the Qn estimator, Sn estimator, MAD 

estimator, and τ estimator, in order to robustify the Gnandesikan- Kettenring estimator. Through the 

use of a Monte Carlo simulation and a real-life data, the performance of the suggested control charts is 

assessed. The four techniques all outperform the traditional method and provide greater computing 

efficiency. 

 

Keywords: Gnandesikan- Kettenring estimator, Qn estimator, Sn estimator, MAD, τ 

estimator. 

 

1. Introduction 

 

Bivariate control charts are specifically designed for situations where two variables are observed 

simultaneously. It enables the detection of patterns or trends that signal a shift or alteration in the 

process. There are two separate phases, namely Phase I and Phase II when constructing the control 

chart [1]. Historical data is used in Phase I to determine control limits, estimate the unknown 

parameters of the in-control process, and evaluate the process' stability. Phase II involves applying the 

estimated parameters and control limits discovered in Phase I to the data gathered during the actual 

production process in order to analyse it and find any deviations or out-of-control signals. Phase II's 

goal is to keep track of and maintain the process' stability in accordance with the defined control limits. 

The most frequently used multivariate control chart for monitoring the variability of a 

multivariate industrial process is the Hotelling's T2 control chart. Let xi, i = 1, 2, …, n be a two-

dimensional vector of measurements made on a process at the time period i, then for the sample x = {x1, 

x2, . . ., xn}, the Hotelling’s T2 statistic is defined as  

 

                                          𝑇2(𝒙𝑖) = (𝒙𝑖 − 𝜽)𝑇𝜮−1(𝒙𝑖 − 𝜽).                                                            (1) 

  

It is assumed that, when the process is in statistical control, xi’s are independent bivariate normal 

random vectors with mean vector θ and covariance matrix.  If both θ and Σ are known, 𝑇𝑖
2 follows a 

Chi-square distribution with 2 degrees of freedom. When the population parameters θ and Σ are 

unknown, the T2 statistic is constructed using the classical estimators of mean vector (𝒙) and covariance 

matrix (S) as given below, 
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                                           𝑇2(𝒙𝑖) = (𝒙𝑖 − 𝒙)𝑇𝑺−1(𝒙𝑖 − 𝒙),                                                               (2) 

 

where 𝒙 = [
𝑥̅1

𝑥̅2
] and 𝑺 =  [

𝑆11 𝑆12

𝑆21 𝑆22
] , 𝑆12 = 𝐶𝑜𝑣(𝑋1,  𝑋2). When constructing control charts using phase I 

data, the classical estimators, which are unfortunately highly susceptible to the influence of outliers, 

can produce inaccurate findings (known as the masking problem). Researchers have suggested several 

methods in the literature to lessen the negative effects of outliers in response to this problem. The 

control charts can be made more robust and reliable in the presence of outliers by using robust 

estimators. Through the use of robust estimators, which are more resistant to the presence of outliers, 

the conventional estimators are swapped out in these alternative methods. 

This paper proposes a robust bivariate control chart that can effectively handle spurious 

outliers. The proposed control chart makes use of the covariance estimator introduced by 

Gnanadesikan and Kettenring [2], which is based on the identity  

 

                                        cov(𝑋, 𝑌) =
1

4
(𝜎(𝑋 + 𝑌)2 − 𝜎(𝑋 − 𝑌)2),                                                   (3) 

 

where σ is the standard deviation and X, Y is a pair of random variables. By replacing σ by a robust 

scale estimator, one can easily robustify the Gnanadesikan and Kettenring (GK) estimator. The robust 

GK estimator is defined as 

  

                                      covR(𝑋, 𝑌) =
1

4
(𝑠𝑅(𝑋 + 𝑌)2 − 𝑠𝑅(𝑋 − 𝑌)2),                                               (4) 

 

where 𝑠𝑅 is a robust scale estimator. This study has considered four robust scale estimators with an 

optimal breakdown point to robustify the GK estimators. These robust GK estimators were then used 

for the construction of bivariate control charts. The Lower control limits (LCL) of these control charts 

are set to zero and the Upper Control limits (UCL) were estimated by fitting the quantiles. The 

performance of these control charts is examined and compared with that of classical bivariate control 

chart through Monte Carlo simulation.  

 

2. Robust scale estimators 
 

For a variety of applications, from genuine scale problems to outlier identification, and as auxiliary 

factors for more complicated analysis, robust estimates of scale are crucial. The broad population of 

users of statistical methods seems to have a somewhat lower level of acceptance for robust estimation 

of scale. Previously, the interquartile range, which has a breakdown point of 25%, was the only robust 

scale estimator to be found in the majority of statistical software packages.  

 

i) Median Absolute Deviation (MAD) 

 

A preliminary or auxiliary estimate of scale is frequently required in robust estimation. A very robust 

scale estimator is the median absolute deviation about the median (MAD), given by 

 

                                                MAD = 𝑏 med𝑖{|𝑥𝑖 − med𝑗(𝑥𝑗)|},                                                           (4) 

 

where ‘med’ denotes median. The MAD has the best possible breakdown point (50%, twice as much as 

the interquartile range), and its influence function is bounded, with the sharpest possible bound among 

all scale estimators. The MAD was first promoted by Hampel [3], who attributed it to Gauss. The 

constant b in equation (4) is needed to make the estimator consistent for the parameter of interest. In 

the case of the usual parameter a at Gaussian distributions, we need to set b = 1.4826. In spite of many 

advantages, the MAD also has some drawbacks. Its efficiency at Gaussian distributions is very low; 
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whereas the location median's asymptotic efficiency is still 64%, the MAD is only 37% efficient. Also, it 

takes a symmetric view on dispersion.  

 

ii) τ Estimator 

 

Yohai and Zamar [4] introduced a new class of robust scale estimates called τ estimates which possesses 

optimal breakdown value. Let ρ be a real function satisfying the following properties: 
1. 𝜌(0) = 0. 

2. 𝜌(−𝑢) =  𝜌(𝑢). 
3. 0 ≤ 𝑢 ≤ 𝑣 implies that 𝜌(𝑢) ≤  𝜌(𝑣). 

4. ρ is continuous. 

5. Let a = Sup ρ(u); 0 < a < ∞ 

6. If ρ(u) < a and 0 ≤ 𝑢 < 𝑣, then 𝜌(𝑢) < 𝜌(𝑣). 

7.  

Let ρ1 an ρ2 bet two functions satisfying above assumptions. Then for a given sample u = (u1, …, un) the 

τ estimate for scale is defined as  

 

                                               𝜏𝑛(𝒖) = 𝑠2(𝒖)
1

𝑛
∑ 𝜌2 (

𝑢𝑖

𝑠(𝒖)
 )𝑛

𝑖=1 ,                                                          (5) 

 

where s be a M estimate of scale based on ρ1. This estimator possesses approximately 80% efficiency 

when c = 3. Moreover, τ estimate is asymptotically normal and has bounded influence function. 

Maronna and Zamar [5] used this estimate for introducing a multivariate outlier detection technique in 

which they have considered s = MAD and ρ2(x) = min (x2, c2). This study also used the considerations of 

Maronna and Zamar for s and ρ2. 

 

iii) Sn and Qn Estimator 

 

To address the lower efficiency drawback of MAD, Rousseeuw and Croux [6] introduced two robust 

scale estimators with optimal breakdown value of 50%, namely, Sn estimator and Qn estimator. Sn 

estimator is defined as  

 

𝑆𝑛 = 𝑐 med
𝑖

{med
𝑗

|𝑥𝑖 − 𝑥𝑗|}.                                                              (6) 

 

The factor c is for consistency, and its default value is 1.1926. Moreover, the asymptotic efficiency Sn is 

58.23% which is much higher than MAD. A drawback of MAD, and Sn, is that their influence functions 

have discontinuities. The Qn estimator is solution for this drawback. It is defined as  

 

𝑄𝑛 = 𝑑{|𝑥𝑖 − 𝑥𝑗|; 𝑖 < 𝑗}
(𝑘)

,                                                               (7) 

 

where d is a constant factor and 𝑘 = (
ℎ
2

) ≈
(

𝑛
2)

4
, where ℎ = [

𝑛

2
] + 1 is roughly half of the observations. 

The estimator Qn, shares the attractive properties of Sn simple and explicit formula, a definition that is 

equally suitable for asymmetric distributions, and a 50% breakdown point. In addition, we will see that 

its influence function is smooth, and that its efficiency at Gaussian distributions is very high (about 

82%). Rousseeuw and Croux [6] showed that, although Qn is more efficient, Sn is more preferable in 

most of the applications because of its low gross-error sensitivity.   

 

3. Proposed Bivariate Robust Control Charts 
 

Let {x1, . . ., xn} be a set of Phase I data follows bivariate normal distribution with mean vector θ and 

covariance matrix Σ. Let y ∉ {x1, . . ., xn}be a Phase II observation, then it is known that 
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𝑇2(𝒚) ~ [
2(𝑛2− 1)

𝑛(𝑛 − 2)
] 𝐹(2,𝑛−2)                                                                (8) 

 

where T2(y) is as defined in Equation (1) and 𝐹(𝑣1,𝑣2) is F distribution with (v1, v2) degrees of freedom [7]. 

Since this statistic is not robust to the presence of outliers, in the proposed robust control chart we use 

robust Hotelling’s T2 statistic, denoted by 𝑇𝑅
2. It is obtained by replacing the classical estimates used for 

the computation of Hotelling’s T2 statistic by their robust counterpart.  Suppose xmed and SGK represent 

the component wise median vector and robust GK covariance matrix, respectively. We define a robust 

Hotelling’s T2 for y based on these estimates by 

 

                                  𝑇𝑅
2 (𝒚) = (𝒚 − 𝒙𝒎𝒆𝒅)𝑇 𝑺𝐺𝐾

−1 (𝒚 − 𝒙𝒎𝒆𝒅),                                               (9)     

                                             

where 𝑺𝐺𝐾 = [
𝑠𝑅(𝑋1)2 𝑐𝑜𝑣𝑅(𝑋1, 𝑋2)

𝑐𝑜𝑣𝑅(𝑋1, 𝑋2) 𝑠𝑅(𝑋2)2 ]. By applying Slutsky theorem [8], the asymptotic distribution 

of 𝑇𝑅
2 can be obtained as Chi square distribution with 2 degrees of freedom. As 𝑛 → ∞ 

 

                  (𝒚 − 𝒙𝒎𝒆𝒅)𝑇𝑺𝐺𝐾
−1 (𝒚 − 𝒙𝒎𝒆𝒅)

𝐷
→ (𝒚 − 𝜽)𝑇𝜮−1(𝒚 − 𝜽) ~𝝌(2)

2 .                           (10) 

 

This asymptotic distribution, though, only holds true for large sample sizes. We employ Monte Carlo 

simulations to estimate quantiles for different sample sizes in order to determine the control limits for 

the suggested control charts. The sample size and quantiles of 𝑇𝑅
2 were then fitted with a smooth curve. 

For modest Phase I sample sizes, these fits can be utilised to determine the proper control limits of the 

proposed control charts. 

 

3.1. Estimation of Control Limits for the proposed control charts 
 

Upper control limits of the proposed control charts are obtained by modelling the quantiles of 𝑇𝑅
2, for a 

given Phase I sample size n, computed from N=10000 trials. Phase I samples are generated from a 

standard bivariate normal distribution N2(0, I) and 99%, 95%, 99.73% and 99.9% quantiles of 𝑇𝑅
2 are 

computed using Sn, Qn, MAD and τ estimates. In each trial, for each data set, we also generate a new 

random observation yi from N2(0, I) (treated as a Phase II observation) and calculate the corresponding 

𝑇𝑅
2 (𝒚𝑖) value using robust GK covariance estimates. By inverting the empirical distribution function of 

𝑇𝑅
2 (𝒚𝑖), computed for n = 10, 15, 20, . . . ,500, we obtain Monte Carlo estimates of the 99%, 95%, 99.73% 

and 99.9% quantiles.  

Scatter plots of the empirical quantiles of 𝑇𝑅
2 (𝒚𝑖) versus the sample size n suggest that we could 

model the quantiles using a family of regression curves of the form 𝑓(𝑛) = 𝑎 +
𝑏

𝑛𝑐. Scatter plots of the 

empirical 99% quantiles of 𝑇𝑅
2 (𝒚𝑖) computed using the four robust scale estimates are shown in figure 

1. Since the 𝑇𝑅
2 statistic asymptotically follow 𝜒(2)

2  distribution, following two parameter family of 

curves is used for both robust GK control charts: 

 

                                                      𝑓1−𝛼(𝑛) = 𝝌(2,1−𝛼)
2 +

𝑏1−𝛼

𝑛𝑐1−𝛼 ,                                                             (11) 

 

where 𝝌(2,1−𝛼)
2  is the 1 − α quantile of the χ2 distribution with 2 degrees of freedom and b1−α and c1−α are 

constants with overall false alarm probability α. Fitting this curve to the data will help us to estimate 

the desired upper control limits of the proposed control charts for any Phase I sample of size n. Note 

that, as n increases, f1−α(n) approaches 𝜒(2,1−𝛼)
2 . Table 1 gives the least-square estimates of the parameters 

b1−α and c1−α. Using Table 1 and Equation (11), we can compute the 99%, 95%, 99.73% and 99.9% quantiles 

of 𝑇𝑅
2 (𝒚𝑖) for Phase I sample size n. The regression curves given by Equation (9) fit well to all the cases 

in Table 1, yielding R2 values of at least 90.7%.  
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Figure 1: Simulated Quantiles of 𝑇𝐺𝐾
2  and the Fitted Curves for α = 0.01 

 

Table 1: The Least-Squares Estimates of the Regression Parameters b1−α and c1−α for Confidence Levels 1 − α = 

0.99, 0.95, 0.9973 and 0.999. 

α Parameters GK(Qn) GK(Sn) GK(MAD) GK(τ) 

0.01 

b1−α 13120.00 1281.00 5496.00 1145.00 

c1−α 2.451 1.598 1.758 1.632 

R2 0.983 0.963 0.985 0.954 

0.05 

b1−α 228.80 249.50 462.60 324.20 

c1−α 1.437 1.399 1.373 1.447 

R2 0.916 0.930 0.976 0.942 

0.0027 

b1−α 120600.00 11440000.00 721800.00 2610.00 

c1−α 2.945 4.66 3.22 1.656 

R2 0.987 0.990 0.990 0.907 

0.001 

b1−α 556600.00 26090.00 41240.00 3973.00 

c1−α 3.526 1.947 1.769 1.826 

R2 0.968 0.920 0.950 0.930 

0.1 

b1−α 31530.00 248.30 219.4 118.60 

c1−α 1.65 1.574 1.31 1.281 

R2 0.951 0.919 0.967 0.947 
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3.2. Computational algorithm for obtaining the proposed control chart 
 

A step-by-step approach for constructing proposed robust control chart is given as follows: 

 

Phase I 

1. Select the confidence level 1 – α and sample size n. 

2. Collect the Phase I data {x1, x2, ..., xn} at predetermined periodic intervals and compute robust 

estimates of location and scale parameters using this data. 

3. Use Table 1 to select the least square estimates of the parameters b1−α and c1−α for the desired α, then 

use equation (11) to determine the upper control limit. 

 

Phase II 

4. Compute 𝑇𝑅
2 for each of the new observation as per Equation (11) and plot it on a control chart with 

the control limits determined in Phase I. 

5. Analyse the chart and look for any out-of-control points or non-random patterns.  

 

4. Performance of the Proposed Control Charts 

 
We carried out numerous simulations to assess and compare the efficiency of the proposed control 

charts under normal and contaminated situations. The control chart's efficacy is assessed by analysing 

its ability to detect changes and the rate of false detections in the process behaviour using different 

estimators in Phase I. We measure the performance of the control chart by success rate (SR)- which is the 

proportion of statistic values that exceed the control limits across 1000 replications, which provides an 

estimate of the likelihood of detecting changes and false alarm rate (FAR) – which is the false detections 

in the process behaviour based on the Phase II data. Phase I data are generated using the following 

contaminated model: 

(1 − ε) N2(θ0, Σ0) + ε N2(θ 1, Σ1), 

 

where ε is the proportion of outliers, θ0 and Σ0 are the in-control parameters and θ1 and Σ1 are the out-

of-control parameters of location and scatter. Without loss of generality, θ0 is set to be a zero vector. We 

have generated the phase I data sets for n = 25, 50, 100 and 1000, ε = 0, 0.1 and 0.2 and α = 0.001, 0.0027, 

0.01, 0.05 and 0.1.  The probability of detecting a change depends on the values of θ1, Σ0 and Σ1 and 

hence we consider three different contaminated models in which the values of θ 1, Σ0 and Σ1 vary. 

 

Case A: Independent Variables 
 

In this case, the two variables (Quality Characteristics) x1 and x2 are assumed to be independent. The 

contaminated normal model considered is as follows: 

 

(1 − ε) N2(0, I2) + ε N2(θ1, I2), 

 

where I2 is the identity matrix of size 2. In this case, we compare the behaviour of different robust 

alternatives when there are different-sized changes in the average of all the variables if the variables 

are independent. 

 

Case B: Correlated Variables 
 

In this case, two variables, x1 and x2 are assumed to be correlated. The contaminated normal model 

considered is as follows: 

(1 − ε) N2(0, Σ0) + ε N2(θ1, Σ0), 
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where Σ0 = [
1 0.9

0.9 1
]. We have used this value of Σ0 to analyse whether the correlation level affects the 

detection probability of each alternative. 

 

Table 2: SR (FAR) obtained for Case A with different values of θ1 and ε 

n θ1 ε GK(Qn) GK(Sn) GK(MAD) GK(τ) Classical 

50 (0,0) 0 100 (1.9) 100 (1.0) 99.8 (0.8) 100 (1.3) 100 (1.3) 

10 100 (1.4) 100 (1.0) 99.9 (0.4) 100 (1.1) 100 (1.1) 

20 100 (1.3) 100 (0.9) 99.8 (0.6) 100 (0.6) 100 (0.6) 

(5,5) 0 100 (2.0) 100 (1.6) 99.7 (1.3) 100 (1.2) 100 (1.5) 

10 98.8 (0.3) 98.8 (0.3) 97.7 (0.4) 98.6 (0.1) 22.1 (0.2) 

20 86.2 (0.0) 80 (0.0) 76.8 (0.0) 74.3 (0.1) 2 (0.2) 

(10,10) 0 100 (1.1) 99.9 (0.3) 99.7 (0.5) 100 (1.7) 100 (0.8) 

10 99.4 (0.3) 99.1 (0.1) 97.9 (0.3) 99.1 (0.4) 0.6 (0.4) 

20 88.3 (0.0) 80.8 (0.0) 79.8 (0.1) 75.8 (0.2) 0.4 (0.3) 

100 (0,0) 0 100 (1.2) 100 (1.0) 100 (1.0) 100 (1.2) 100 (1.2) 

10 100 (1.5) 100 (1.4) 100 (1.3) 100 (1.3) 100 (1.3) 

20 100 (1.4) 100 (1.3) 100 (1.2) 100 (0.7) 100 (0.7) 

(5,5) 0 100 (0.6) 100 (0.7) 100 (0.9) 100 (1.5) 100 (0.6) 

10 99.7 (0.2) 99.6 (0.1) 99.8 (0.3) 99.8 (0.4) 30.2 (0.4) 

20 92.5 (0.0) 90.4 (0.0) 93.5 (0.0) 83.9 (0.0) 2.5 (0.1) 

(10,10) 0 100 (1.5) 100 (1.2) 99.9 (0.7) 100 (0.7) 100 (1.1) 

10 99.8 (0.2) 99.8 (0.3) 99.8 (0.5) 99.6 (0.4) 0.1 (0.2) 

20 91.1 (0.1) 89.4 (0.1) 92.5 (0.1) 85.8 (0.2) 0.4 (0.4) 

500 (0,0) 0 100 (1.9) 100 (1.9) 100 (1.8) 100 (1.8) 100 (1.8) 

10 100 (1.5) 100 (1.4) 100 (1.4) 100 (1.4) 100 (1.4) 

20 100 (0.8) 100 (0.9) 100 (0.9) 100 (0.8) 100 (0.8) 

(5,5) 0 100 (1.4) 100 (1.2) 100 (1.4) 100 (1.2) 100 (1.2) 

10 99.8 (0.0) 99.8 (0.0) 99.9 (0.0) 99.8 (0.1) 34.5 (0.0) 

20 94.8 (0.0) 95.5 (0.0) 98.1 (0.0) 89.3 (0.0) 2.4 (0.3) 

(10,10) 0 100 (0.6) 100 (0.7) 100 (0.8) 100 (1.8) 100 (0.6) 

10 99.8 (0.1) 99.9 (0.1) 99.9 (0.2) 99.9 (0.2) 0.7 (0.1) 

20 94.6 (0.0) 95.1 (0.0) 97.8 (0.1) 88.1 (0.0) 0.4 (0.2) 

1000 (0,0) 0 100 (1.0) 100 (0.9) 100 (0.8) 100 (0.9) 100 (0.9) 

10 100 (0.8) 100 (0.8) 100 (0.9) 100 (0.8) 100 (0.8) 

20 100 (0.6) 100 (0.5) 100 (0.5) 100 (0.7) 100 (0.7) 

(5,5) 0 100 (0.8) 100 (0.8) 100 (1.0) 100 (0.7) 100 (0.6) 

10 99.9 (0.2) 99.9 (0.2) 100 (0.3) 100 (0.0) 34.9 (0.3) 

20 94.9 (0.0) 95.8 (0.1) 98.3 (0.1) 89.5 (0.0) 2 (0.4) 

(10,10) 0 100 (1.8) 100 (1.9) 100 (1.7) 100 (0.8) 100 (1.8) 

10 99.8 (0.1) 99.8 (0.1) 100 (0.2) 99.8 (0.1) 0.8 (0.2) 

20 93.8 (0.0) 94.7 (0.0) 98.3 (0.1) 89 (0.0) 0.3 (0.2) 

 

Case C: Correlated Variables and Regression Outliers 
 

Here, the two variables x1 and x2 are assumed to be correlated and regression outliers are introduced. 

The contaminated normal model considered is as follows:    

 

(1 − ε) N2(0, Σ0) + ε N2(θ1, Σ1), 
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where Σ0 = [
1 0.9

0.9 1
] and Σ1 = [

0.1 0
0 0.1

]. In this case, we analyse and compare the proposed robust 

methods in terms of the so-called good leverage and regression outliers. 

In all the three cases, we consider θ1 as a vector of size 2 where the elements are all 0 (when 

there is no change), 5 or 10 (which is a good leverage point).  This process is repeated 1000 times, and 

in each trial, a random observation, z1k from N2(0, ΣU) and another observation, z2k from N2(θC, ΣC) are 

generated, for k = 1, 2, …, 1000. Here, ΣU is the scale estimator used for generating uncontaminated 

observations in Phase I data, and θC and ΣC are the location and scale estimates used for generating 

contaminated observations in Phase I model. The success rates are computed as the percentages of z2k’s 

that are successfully detected, and the false alarm rates are computed as the percentages of z1k’s that are 

falsely detected. The results obtained for α = 0.01 is presented here.  

 

Table 3: SR (FAR) obtained for Case B with different values of θ1 and ε 

n θ1 ε GK(Qn) GK(Sn) GK(MAD) GK(τ) Classical 

50 (0,0) 0 95.6 (4.1) 90.6 (4.6) 84.6 (2.7) 97 (2.8) 97.4 (0.8) 

10 95.6 (4.3) 91.4 (3.2) 84.6 (2.7) 96.3 (2.7) 96.3 (0.9) 

20 95.5 (3.4) 90.9 (4.8) 82.4 (1.7) 95.7 (2.6) 96.4 (1.4) 

(5,5) 0 94.7 (4.5) 91.2 (3.8) 83.6 (3.0) 96.9 (1.4) 97 (0.9) 

10 84.7 (3.0) 77.1 (2.9) 67.2 (1.7) 79.7 (3.1) 17.9 (0.4) 

20 57 (2.3) 48.2 (1.9) 40.5 (1.7) 40.2 (1.1) 2.3 (0.2) 

(10,10) 0 95.3 (3.4) 91.2 (3.5) 82.4 (2.8) 97.1 (2.5) 98.3 (1.2) 

10 84.4 (3.9) 76.2 (1.9) 67.4 (2.6) 80.3 (2.6) 0.7 (0.2) 

20 57.1 (2.5) 46.3 (1.3) 43.8 (0.8) 41.1 (2.1) 0.8 (0.4) 

100 (0,0) 0 98.6 (3.3) 96.3 (4.7) 94.2 (3.9) 98.6 (2.4) 98.4 (1.3) 

10 97.9 (2.0) 95 (3.7) 92.2 (3.4) 97.6 (2.2) 97.4 (1.1) 

20 98.5 (1.8) 95.8 (3.4) 92.4 (3.5) 97.9 (0.9) 97.8 (0.4) 

(5,5) 0 98.5 (2.7) 96 (4.8) 93.2 (3.6) 98.1 (0.9) 98.1 (1.0) 

10 90.4 (1.5) 86.9 (2.6) 86.7 (3.1) 85.8 (2.0) 23.5 (0.9) 

20 63.3 (0.9) 56.8 (2.0) 61.4 (2.7) 49.6 (1.9) 2.8 (0.2) 

(10,10) 0 98.8 (2.1) 96 (3.7) 93 (3.6) 98.5 (1.7) 98.7 (1.1) 

10 91.2 (0.7) 87.4 (2.2) 87.6 (2.6) 88.2 (2.1) 0.8 (0.3) 

20 62.4 (0.7) 57.5 (2.5) 60.1 (2.0) 51.2 (1.6) 0.7 (0.6) 

500 (0,0) 0 99.2 (1.0) 99 (2.2) 98.8 (2.8) 99.3 (1.2) 99.2 (1.0) 

10 99.1 (1.1) 98.9 (2.7) 98.1 (3.5) 99 (1.1) 99 (1.1) 

20 98.6 (1.3) 98.6 (2.6) 97.8 (3.5) 98.7 (1.5) 98.6 (1.5) 

(5,5) 0 98.6 (1.1) 98.7 (2.9) 98.3 (3.9) 99 (1.2) 98.4 (1.1) 

10 90.8 (0.7) 91.9 (2.6) 94 (3.2) 90 (0.7) 25.6 (0.6) 

20 62.4 (0.0) 63.8 (0.8) 74.8 (1.6) 53.5 (0.8) 3.1 (0.3) 

(10,10) 0 98.3 (1.7) 98.2 (2.2) 97.6 (3.8) 98.5 (1.4) 98.4 (1.7) 

10 90.9 (0.1) 92.4 (1.5) 93.1 (2.5) 91.1 (0.4) 0.7 (0.2) 

20 64.6 (0.0) 66.6 (0.9) 77.1 (1.4) 55 (0.3) 0.6 (0.4) 

1000 (0,0) 0 99 (0.2) 98.9 (0.5) 98.7 (1.3) 99 (0.3) 98.9 (0.2) 

10 98.1 (1.3) 98.1 (1.6) 97.8 (1.7) 98 (1.1) 97.9 (1.1) 

20 99.1 (0.6) 98.9 (1.6) 98.8 (2.1) 99.1 (0.8) 98.9 (0.7) 

(5,5) 0 98.8 (1.3) 98.7 (1.5) 98.7 (2.6) 98.7 (1.2) 98.8 (1.1) 

10 91.3 (0.0) 92.4 (0.5) 93.9 (2.0) 91.8 (0.5) 25.8 (0.2) 

20 64.7 (0.0) 66.7 (0.1) 76.4 (1.1) 53.4 (0.3) 3.2 (0.6) 

(10,10) 0 98.3 (1.6) 98.1 (2.1) 98 (2.7) 98.7 (1.2) 98.3 (1.6) 

10 90.1 (0.1) 91.8 (0.4) 93.8 (1.4) 90.8 (0.4) 0.5 (0.2) 

20 64.8 (0.0) 67.2 (0.0) 77.3 (1.1) 53.1 (0.3) 0.7 (0.1) 
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Table 2 presents the results obtained from simulations conducted for Case A samples. The 

findings clearly indicate that when the phase I data contains outliers, the control charts based on robust 

methods exhibit a high success rate with minimal FAR compared to the classical control chart. 

Furthermore, the success rates of the proposed control charts improve with increasing sample size. 

Conversely, when the phase I data is uncontaminated, the robust control charts demonstrate similar 

performance to their classical counterpart.  

 

Table 4: SR (FAR) obtained for Case C with different values of θ1 and ε 

n θ1 ε GK(Qn) GK(Sn) GK(MAD) GK(τ) Classical 

50 (0,0) 0 97.9 (4.7) 96.2 (4.9) 91.6 (2.3) 99.6 (2.4) 100 (1.2) 

10 98.8 (3.8) 97.1 (3.1) 95.3 (2.4) 99.3 (2.7) 100 (1.3) 

20 99 (4.1) 98.8 (4.1) 96.5 (3.9) 99.1 (4.3) 100 (1.8) 

(5,5) 0 98.3 (3.7) 96.8 (3.3) 90 (2.7) 99.2 (1.9) 100 (0.6) 

10 95.1 (2.1) 85.6 (2.8) 75.9 (2.1) 91.5 (3.7) 8.4 (0.2) 

20 78.6 (0.2) 45.9 (1.3) 38 (1.1) 36.7 (2.0) 0.9 (0.3) 

(10,10) 0 98.8 (5.2) 94.9 (4.0) 90.8 (2.9) 99.1 (2.6) 100 (1.0) 

10 96.3 (3.2) 87.8 (2.5) 77.4 (1.7) 92.7 (2.9) 0.8 (0.6) 

20 76.6 (1.7) 47.6 (1.4) 37.1 (1.0) 38 (1.5) 0.6 (0.4) 

100 (0,0) 0 100 (2.5) 98.2 (3.3) 96 (3.7) 99.9 (1.6) 100 (1.0) 

10 100 (2.1) 99.2 (2.6) 97.7 (3.5) 99.9 (1.7) 100 (0.6) 

20 99.9 (2.8) 99.7 (3.1) 99.5 (5.2) 99.8 (3.3) 100 (1.9) 

(5,5) 0 99.8 (2.6) 98.4 (2.9) 95.7 (2.5) 100 (1.6) 100 (0.5) 

10 99.7 (0.6) 94.6 (3.5) 93.3 (2.0) 98.4 (2.7) 10.6 (0.1) 

20 91.2 (0.1) 62.4 (2.3) 68.4 (1.6) 47.4 (1.3) 1.2 (0.4) 

(10,10) 0 99.9 (3.5) 98 (4.5) 96.4 (4.3) 100 (1.9) 100 (1.5) 

10 99.9 (0.7) 96.1 (3.4) 94 (3.2) 98 (2.7) 0.6 (0.1) 

20 92.9 (0.2) 65.5 (1.8) 68.9 (1.5) 50.6 (1.5) 0.2 (0.1) 

500 (0,0) 0 100 (1.0) 99.9 (1.9) 99.4 (3.4) 100 (1.0) 100 (0.8) 

10 100 (1.5) 100 (1.8) 99.8 (3.5) 100 (1.6) 100 (1.3) 

20 100 (2.1) 100 (2.4) 100 (3.8) 100 (2.1) 100 (1.7) 

(5,5) 0 100 (1.3) 100 (2.5) 99.9 (3.3) 100 (1.7) 100 (1.4) 

10 100 (0.4) 99.6 (1.5) 98.7 (2.3) 100 (0.5) 11 (0.6) 

20 98.9 (0.0) 85.3 (1.0) 95.7 (1.0) 56.4 (1.4) 1.8 (0.0) 

(10,10) 0 100 (1.3) 99.9 (2.5) 99.6 (3.3) 100 (1.5) 100 (1.4) 

10 100 (0.2) 99.8 (0.8) 98.9 (2.6) 100 (0.4) 0.9 (0.4) 

20 99.2 (0.0) 87.9 (1.2) 95.4 (1.9) 58.8 (1.0) 0.4 (0.2) 

1000 (0,0) 0 100 (1.1) 100 (1.5) 99.9 (1.9) 100 (1.3) 100 (1.3) 

10 100 (1.7) 100 (2.0) 100 (3.3) 100 (2.0) 100 (1.7) 

20 100 (1.9) 100 (2.5) 100 (3.5) 100 (1.7) 100 (1.7) 

(5,5) 0 100 (0.9) 100 (1.2) 99.9 (1.8) 100 (0.8) 100 (0.8) 

10 100 (0.3) 99.9 (0.8) 100 (1.2) 100 (0.5) 10 (0.3) 

20 99.7 (0.0) 89.9 (0.3) 98.9 (0.9) 57.1 (0.4) 2 (0.3) 

(10,10) 0 100 (1.0) 100 (1.0) 100 (2.2) 100 (1.3) 100 (1.0) 

10 100 (0.1) 100 (0.8) 99.8 (1.6) 100 (0.0) 0.6 (0.2) 

20 99.9 (0.0) 88.2 (0.1) 98.5 (1.1) 59.4 (0.0) 0.2 (0.1) 
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Results obtained for Case B samples are presented in table 3. It is clear that the proposed control 

charts perform well with respect to SR and FAR in almost all cases. Even though, their performance is 

not very satisfactory in cases of small samples with high contamination, their SR and FAR are getting 

better with increasing sample size.  

In all the three cases the proposed robust GK based control charts are performing better than 

the classical control chart in contaminated situations and they show similar performance as that of 

classical chart in uncontaminated cases. It is interesting to see that, among the robust control charts, the 

one based on GK(Qn) shows better success rate than other robust control charts when n < 500 while the 

control chart based on GK(MAD) outperform others for large samples when the data from Case A and 

Case B. But, when the data come from Case C, in all the cases GK(Qn) based control chart shows superior 

performance. 

 

4.1. Time Complexity 
 

The proposed methods' significantly faster computation times are a key benefit. To compare the 

computation times of these approaches for various sample sizes, a simulation study was done. The 

simulation study consists of 10,000 trials, and the average running time is presented in table 5. Among 

the robust methods, the control chart based on GK(Sn) is multiple times faster than the other three 

methods when n ≤ 500 while GK(MAD)-based control chart performs faster than the other compared 

methods when n > 500. 

 

Table 5: Running time (in seconds) 

n GK(Qn) GK(Sn) GK(MAD) GK(τ) 

50 0.000128 0.000080 0.000207 0.000361 

100 0.000222 0.000093 0.000231 0.000361 

500 0.001065 0.000290 0.000304 0.000516 

1000 0.002231 0.000526 0.000397 0.000992 

 

4.2. Real life data 
 

A data set given by Quesenberry [9] has been used to evaluate the performance of the proposed 

methods in real life data. The original data consists of 11 quality variables measured on 30 products 

from a production process. For our comparison purposes, we consider the third and fourth variables 

as our bivariate data. Bivariate control charts using the proposed robust methods and the classical 

methods are developed for this data and presented in figure 3. From charts it is clear that the data is 

outlier-free, and none of the methods, including classical method, commit any false detection. In order 

to evaluate performance in a contaminated situation, we artificially created two outlying observations. 

Observations 7 and 16 are changed from (21.5, 5.08) and (21.5, 15.32), to (22.75, 5.08) and (22.75, 15.32) 

respectively, by adding a very small shift of 1.25 in the first variable. Control charts of the contaminated 

data set are given in figure 3, and it is clear that except for the classical control chart, all the proposed 

control charts detected these outliers.  
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Figure 2: Control charts for uncontaminated Quesenberry data 
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Figure 3: Control charts for contaminated Quesenberry data 

 

5. Conclusions 

 

When quality characteristics are interdependent, monitoring them simultaneously is crucial. Using 

univariate techniques to monitor or analyse these data is frequently ineffective. The Hotelling's T2 

control chart, which is created using the classical estimates of location and scatter, is the most well-

known multivariate process monitoring and control method. Unfortunately, the existence of outliers 
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has a significant impact on the classical estimates, which results in incorrect T2 statistics computation. 

In light of this, using Hotelling's T2 control chart based on classical estimates will be quite deceptive. 

We address this problem for the bivariate case in this paper and suggest four robust control charts to 

handle outliers. The proposed control charts make use of the covariance estimator introduced by 

Gnanadesikan and Kettenring [2]. Four highly robust estimators - the Qn estimator, Sn estimator, MAD 

estimator, and τ estimator - were used to robustify the GK estimator. These estimators have a bounded 

influence function and an ideal break down value. 

Four different robust control charts for bivariate quality characteristics were introduced using 

GK(Qn), GK(Sn), GK(MAD) and GK(τ) estimators. The upper control limits of these robust control charts 

are obtained by simulating the empirical quantiles of robust T2 statistics, while the lower control limits 

are set to zero. Performance of the proposed methods is evaluated through Monte Carlo simulation. 

Three cases of contaminated Phase I datasets were considered for various amounts of contaminations 

and in all the cases the proposed methods outperform the classical chart. The proposed methods were 

also applied to real-life datasets, and even though the data contained outliers, they were still able to 

identify the out-of-control observation. Another advantage of the proposed methods is their fast 

computation which will reduce computational complexity. 
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