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Abstract

In this paper, a generalization of the Exponentiated Kumaraswamy distribution referred to as the
Transmuted Exponentiated Kumaraswamy distribution is proposed. The new transmuted distribution
is developed using the quadratic rank transmutation map. The mathematical properties of the new
distribution is provided. Explicit expressions are derived for the moments, incomplete moments, moment
generating function, quantile function, entropy, mean deviation and order statistics. Survival analysis
is also performed. The distribution parameters are estimated using the method of maximum likelihood.
Simulation of random variables is performed in order to investigate the performance of the estimates. An
analysis using real life data is conducted to demonstrate the usefulness of the proposed distribution.

Keywords: Bonferroni and Lorenz curves; Hazard function; Maximum likelihood estimation;
Moments; Transmuted Exponentiated Kumaraswamy Distribution; Transmuted family.

1. Introduction

In probability theory and Statistics, a probability distribution is a mathematical function that
provides the probabilities of the occurrence of various possible outcomes in an experiment.In
modelling our world, probability distributions helps us, thus allowing to obtain estimates of the
probability of a certain event to occur, or estimate it’s variability of happening. Many distribu-
tions have been discovered suitable for many different purposes.The recognition of the proper
distribution will allow a correct application of a model that would easily forecast the probability
of an event.
The Kumaraswamy probability distribution was developed by Kumaraswamy [11] which is
closely related to the beta distribution. It is often termed as a Beta-like distribution. But, in
some situations the Kumaraswamy distribution is simpler to use and more amenable. Since
it’s cumulative distribution function (cdf) has a closed form, it is often preferred over the Beta
distribution. Moreover, unlike the beta cdf, the cdf of Kumaraswamy distribution does not contain
the incomplete Beta function, which makes it much simple to work with and the new properties
of Kumaraswamy distribution such as the Kumaraswamy variables show closeness under expo-
nentiation and under linear transformation was studied by Mitnik [16]. In numerous areas such
as hydrology, electrical, civil, mechanical and financial engineering, Kumaraswamy distribution
has secured appreciable interest, see Mohammed [17]. Some generalized beta distributions of the
second kind having desirable application features in hydrology and meteorology was studied
by Mielke and Johnson [15] and Fletcher and Ponnambalam [7]. Several authors studied more
general properties of Kumaraswamy Distribution, see Silva et. al. [18], ZeinEldin et.al. [23],
Dey et. al. [6], Hassan and Elgarhy [8] and Simbolan et. al. [19]. Usman et. al. [22] derived a
new Weibull-Kumaraswamy distribution and studied its properties and applications. Another
distribution named Kumaraswamy- Pareto distribution was derived by Bourguignon et. al. [5]. A
bivariate Kumaraswamy (BVK) distribution with marginals being Kumaraswamy distributions
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was introduced by Barreto-Souza and Lemonte [4]. Another new three-parameter probability
model named Exponentiated Kumaraswamy distribution and its basic statistical properties and its
applications using real-life datasets were studied by Lemonte et. al. [12].Also, a three-parameter
weighted kumaraswamy distribution was proposed by Abd El-Monsef et. al. [1] for modeling
some biological data, which could accommodate increasing and decreasing hazard rate function
with bathtub shape. AL-Fattah et. al. [2] introduced the Inverted Kumaraswamy Distribution, it’s
properties and estimation.
The transmuted family of distributions has been receiving a high attention over the past few
years. A new technique for adding a new parameter to an already existing distribution that
would provide more flexibility to this distribution by Shaw and Buckley [20]. The method is
named as quadratic rank transmutation map (QRTM). It includes the parent distribution as a
special case and makes it more flexible to model different types of data. The generated family is
also called the transmuted extended distribution. This method have been considered by several
authors for different disributions, see Al-Kadim et. al. [3], Khan et. al. [10], F. Merovci [13,14] and
Sherwaia et. al. [21]. Transmuted Kumaraswamy distribution and its basic statistical properties
were discussed by Khan et. al. [9]. The new model was found to outperform some existing
baseline distributions when applied to real-life data sets.
A random variable X is said to have an Exponentiated Kumaraswamy distribution with parameters
α, β, γ > 0 if its probability density function (pdf) is given by

f (x; α, β, γ) = αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1, 0 < x < 1, α, β, γ > 0 (1)

and the respective cdf is

F(x; α, β, γ) = [1 − (1 − xα)β]γ−1, 0 < x < 1, α, β, γ > 0 (2)

In this paper, a generalization of the Exponentiated Kumaraswamy distribution referred to as
the Transmuted Exponentiated Kumaraswamy distribution is proposed. The new transmuted
distribution is obtained using the quadratic rank transmutation map introduced by Shaw and
Buckley [20]. According to this method, transmutation maps consists of the functional compo-
sition of the cumulative distribution function of one distribution with the inverse cumulative
distribution (quantile) function of another. A comprehensive account of the mathematical proper-
ties of the new distribution is provided.
The organization of this paper is as follows: Section 2 explains the quadratic rank transmu-
tation method. In section 3, the pdf and cdf of our new model, Transmuted Exponentiated
Kumaraswamy distribution is given and provide the graphical presentation of its pdf, cdf, sur-
vival function and hazard rate function for selected values of the parameters. Section 4 provides
its statistical properties such as moments, moment generating function, characteristic function,
quantile function, incomplete moments, entropy, mean deviation and order statistics. Estimation
of parameters of the distribution is done using maximum likelihood estimation is also included
in this section. In section 5, a simulation study is included which is done to validate the estimates
and a real data analysis illustrates the practicability of the proposed distribution. Finally, the
summary and conclusions are stated in section 6.

2. Transmuted Distribution

A random variable X is said to have transmuted distribution if its cumulative distribution
function(cdf) satisfy the relation,

F(x) = G(x)[(1 + λ)− λG(x)], |λ| < 1 (3)

which on differentiation yields the corresponding pdf

f (x) = g(x)[1 + λ − 2λG(x)] (4)

where G(x) and g(x) are the cdf and pdf of the base distribution. Observe that at λ = 0, we have
the distribution of the base random variable.
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3. Transmuted Exponentiated Kumaraswamy Distribution

Using (3) and (4) we have the cdf of Transmuted Exponentiated Kumaraswamy (TEKw) distribu-
tion

F(x; α, β, γ, λ) = (1 + λ)[1 − (1 − xα)β]γ − λ[1 − (1 − xα)β]2γ (5)

with shape parameters α, β, γ > 0 and the transmuting parameter |λ| < 1.
Hence, the pdf of TEKw distribution is given as,

f (x; α, β, γ, λ) = αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ] (6)

where α, β, γ > 0 and |λ| < 1.

Note that the transmuted Exponentiated Kumaraswamy distribution is an extended model
to analyze more complex data and it generalizes some of the widely used distributions.The
Exponentiated Kumaraswamy distribution is clearly a special case for λ = 0.

Figure 1: Plot of the cumulative distribution function for different values of parameters.
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Figure 2: Plot of the density function for different values of parameters.
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4. Statistical Properties

4.1. Moments

Let X be a random variable with its pdf given by (6), then its rth raw moment is given by,

µ
′
r = E(Xr)

=
∫ 1

0
xr f (x)dx

=
∫ 1

0
xrαβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

(7)

splitting into two parts,

= αβγ[
∫ 1

0
xr+α−1(1 − xα)β−1(1 + λ)[1 − (1 − xα)β]γ−1dx

−
∫ 1

0
2λxr+α−1(1 − xα)β−1[1 − (1 − xα)β]2γ−1dx]

Substituting u=xα, du=αxα−1 dx

and evaluating both parts using the series expansions

[1 − (1 − xα)β]γ−1 =
∞

∑
i=0

(−1)iΓγ

Γ(γ − i)i!
(1 − xα)βi

=
∞

∑
i=0

(−1)iΓγ

Γ(γ − i)i!

∞

∑
j=0

(−1)jΓ(βj + 1)
Γ(βj + 1 − j)j!

xαj

=
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓγΓ(βj + 1)
i!j!Γ(γ − i)Γ(βi − j + 1)

xαj

= Mxαj

(8)

and,

[1 − (1 − xα)β]2γ−1 =
∞

∑
i=0

(−1)iΓ2γ

Γ(2γ − i)i!
(1 − xα)βi

=
∞

∑
i=0

(−1)iΓ2γ

Γ(2γ − i)i!

∞

∑
j=0

(−1)jΓ(βi + 1)
Γ(βi + 1 − j)j!

xαj

=
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓ2γΓ(βi + 1)
i!j!Γ(2γ − i)Γ(βi − j + 1)

xαj

= Nxαj

(9)

The rth moment is given by,

E(Xr) = αβγ[
M(1 + λ)

α
B(

r
α
+ j + 1, β)− 2λN

α
B(

r
α
+ j + 1, β)]

=
αβγ

α
[M(1 + λ)B(

r
α
+ j + 1, β)− 2λNB(

r
α
+ j + 1, β)]

= βγB(
r
α
+ j + 1, β)[M + λ(M − 2N)]

(10)
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where,
B(a, b) =

∫ 1
0 ta−1(1 − t)b−1dt is the Beta function and,

M =
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓγΓ(βj + 1)
i!j!Γ(γ − i)Γ(βi − j + 1)

N =
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓ2γΓ(βi + 1)
i!j!Γ(2γ − i)Γ(βi − j + 1)

(11)

Therefore, the expected value E(X) and variance Var(X) of a transmuted exponentiated Ku-
maraswamy random variable X are respectively, given by

E(X) = βγB(
1
α
+ j + 1, β)[M + λ(M − 2N)] (12)

and

V(X) = βγB(
2
α
+ j + 1, β)[M + λ(M − 2N)]− (βγB(

1
α
+ j + 1, β)[M + λ(M − 2N)])2 (13)

4.2. Moment Generating Function

The moment generating function of TEKw(α, β, γ, λ) is given by,

MX(t) = E(etx) =
∫ 1

0
etx f (x)dx

Using the Taylor series expansion,

etx =
∞

∑
n=0

(tx)n

n!

MX(t) =
∫ 1

0

∞

∑
n=0

(tx)n

n!
f (x)dx

=
∞

∑
n=0

(tx)n

n!

∫ 1

0
xn f (x)dx

=
∞

∑
n=0

(tx)n

n!

∫ 1

0
xnαβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

(14)

Splitting into two parts, and evaluating, the moment generating function of TEKw(α, β, γ, λ) is
given by,

MX(t) = βγ
∞

∑
n=0

tn

n!
B(

n
α
+ j + 1)[M + λ(M − 2N)] (15)

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the Beta function and M and N are given by (11).

4.3. Characteristic Function

The characteristic function of TEKw(α, β, γ, λ) is given by,

ϕX(t) = βγ
∞

∑
n=0

(it)n

n!
B(

n
α
+ j + 1)[M + λ(M − 2N)] (16)

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the Beta function and M and N are given by (11).
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4.4. Quantile Function

Q(p) = [1 − [1 − [
(1 + λ)−

√
(1 + λ)2 − 4λp
2λ

]1/γ]1/β]1/α (17)

Then,
Median, 2nd quartile of TEKw(α,β, γ,λ) is obtained by substituting p =1/2 in (17). If U is a
standard uniform variate, we can generate random variables using the following expression.

X = [1 − [1 − [
(1 + λ)−

√
(1 + λ)2 − 4λu
2λ

]1/γ]1/β]1/α (18)

Then the random variable X follows TEKw(α,β,γ,λ).

4.5. Incomplete Moments

The sth incomplete moment, say ϕs(t) of TEKw is,

ϕs(t) =
∫ t

0
xs f (x)dx

=
∫ t

0
xsαβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

=
∫ t

0
xs+α−1αβγ(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

After some algebra,

ϕs(t) = αβγ
[ M(1 + λ)

α
B(tα;

s
α
+ j + 1, β)− 2λN

α
B(tα;

s
α
+ j + 1, β)

]
= βγB(tα;

s
α
+ j + 1, β)

[
M + λ(M − 2N)

] (19)

where B(w; a, b) =
∫ w

0 ta−1(1 − t)b−1dt is the incomplete beta function.The first incomplete
moment can be obtained by substituting s=1 in (19).

4.6. Mean Deviations

The mean deviation is a measure of amount of scatter in a random variable. Let X follow
TEKw(α,β,γ,λ) with mean µ and median M.

• Mean Deviation from the mean is given by,

δ1(x) =
∫ +∞

−∞
|x − µ| f (x)dx = 2µF(µ)− 2ϕ(µ) (20)

• Similarly, the Mean Deviation from the median is,

δ2(x) =
∫ +∞

−∞
|x − M| f (x)dx = µ − 2ϕ(M) (21)

where F(µ) can be determined from (5) and ϕ(q) =
∫ q
−∞ x f (x)dx is the first incomplete

moment.
The mean deviations about mean and median are obtained by substituting median obtained from
(17), first incomplete moment (19) with s = 1 and cdf (5) in (20) and (21).

Application of these equations can be made to obtain the Bonferroni curve, B(x) = ϕ1(X)
E(X)

and

the Lorenz curve, L(X) = ϕ1(X)
F(X)E(X)

where ϕ1(X) is the first incomplete moment from (19), F(x) is
the cdf of TEKw distribution and E(X) is the mean.
These curves are very useful in economics, reliability, medicine, insurance and demography.
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4.7. Entropy

The Renyi Entropy (Alfred Renyi) of a random variable X represents a measure of variation of the
uncertainity which is defined by,

Rp(x) =
1

1 − p
log

∫ +∞

−∞
f (x)pdx

where p > 0 and p ̸= 1
We have,

[1 − (1 − xα)β](γ−1)p =
∞

∑
i=0

Γ(γ − 1)p + 1
Γ((γ − 1)p + 1 − i)

[(1 − xα)β]i

=
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓ((γ − 1)p + 1)Γ(βi + 1)
Γ((γ − 1)p + 1 − i)Γ(βi + 1 − j)

xαj

= ηxαj

(22)

and

[1 − λ[2(1 − (1 − xα)β)γ − 1]]p =
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
[λ[2(1 − (1 − xα)β)γ − 1]i

=
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
λi[2(1 − (1 − xα)β)γ − 1]i

and,

[1 − λ[2(1 − (1 − xα)β)γ − 1]]p =
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
[λ[2(1 − (1 − xα)β)γ − 1]i

=
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
λi[2(1 − (1 − xα)β)γ − 1]i

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

(−1)2i+j+k+l

i!j!k!l!
Γ(p + 1)Γ(i + 1)Γ(γj + 1)Γ(βk + 1)

Γ(p + 1 − i)Γ(i + 1 − j)Γ(γj + 1 − k)Γ(βk + 1 − l)
λi2γjxαl

= θxαl

(23)

Evaluating the above integral, Rennyi entropy is,

Rp(x) =
1

1 − p
log[αp−1(βγ)pηθB(

1
α
[(α + 1)p + 1] + j + l, (β − 1)p + 1)] (24)

where, η and θ are given by (22) and (23). The δ entropy,δ > 0,δ ̸= 1 ,say Hδ(x) is defined as,

Hp(x) =
1

p − 1
log[1 −

∫ +∞

−∞
f (x)pdx]

where p > 0 and p ̸= 1
Using (24),

Hp(x) =
1

p − 1
log[1 − αp−1(βγ)pηθB(

1
α
[(α + 1)p + 1] + j + l, (β − 1)p + 1)] (25)

where η and θ are given by (22) and (23).
The Rennyi entropy converge to the Shannon entropy when δ → 1.
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4.8. Survival Function

Survival function is the probability that a system will survive beyond a given time. Mathematically,
the survival function of TEKw(α,β,γ,λ)) is defined by:

S(x; α, β, γ, λ) = 1 − [1 − (1 − xα)β]γ[(1 + λ)− λ[1 − (1 − xα)β]γ] (26)

where α, β, γ > 0 and |λ| < 1. By choosing some arbitrary values for parameters, we provide
some possible shapes for the survival function of the TEKw as shown in Figure 3:
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Figure 3: Plot of the survival function for different values of parameters.

4.9. Hazard Rate Function

The hazard rate function h(x) of TEKw(α, β, γ, λ) is given as,

h(x; α, β, γ, λ) =
αβγxα−1(1 − xα)β−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]

1 − [(1 + λ)[1 − (1 − xα)β]γ − γ[1 − (1 − xα)β]2γ]
(27)

where α, β, γ > 0 and |λ| < 1.
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Figure 4: Plot of the hazard rate function for different values of parameters.
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4.10. Order Statistics

Let X(1), X(2), ..., X(n) denote the order statistics of a random sample X1, X2, ..., Xn from a popula-
tion with cdf FX(x) and pdf fX(x)given by (5) and (6). The pdf of kth order statistic

fX(k)(x) =
n!

(k − 1)!(n − k)!
αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]

×
{
[(1 + λ)[1 − (1 − xα)β]γ − λ[1 − (1 − xα)β]2γ]k−1

}
×

{
[1 − (1 + λ)[1 − (1 − xα)β]γ + [λ[1 − (1 − xα)β]2γ]]n−k

}

4.11. Maximum Likelihood Estimation

The estimation of parameters α, β, γ and λ is done using the maximum likelihood estimation
method. Let X1, X2, ..., Xn be an observed random sample from TEKw(α, β, γ, λ) distribution with
unknown parameters α,β,γ and λ. The likelihood function is,

L(x) =
n

∏
i=1

f (xi; α, β, γ, λ)

i.e.,

L(x) =
n

∏
i=1

αβγxα−1
i (1 − xα

i )
β−1[1 − (1 − xα

i )
β]γ−1[(1 + λ)− 2λ[1 − (1 − xα

i )
β]γ]

Then the log-likelihood function is given by

lnL = nlnα + nlnβ + nlnγ + (α − 1)
n

∑
i=1

ln(xi) + (β − 1)
n

∑
i=1

ln(1 − xα
i )

+ (γ − 1)
n

∑
i=1

ln(1 − (1 − xα
i )

β) +
n

∑
i=1

ln[(1 + λ)− 2λ(1 − (1 − xα
i )

β)γ]

(28)

Therefore, the MLEs of α, β, γ, λ which maximize (28) must satisfy the following normal equations;

n
α
+

n

∑
i=1

lnxi − (β − 1)
n

∑
i=1

xα
i lnxi

1 − xα
i
+ β(γ − 1)

n

∑
i=1

(1 − xα
i )

β−1xα
i lnxi

[1 − (1 − xα
i )

β]

−2λβγ
n

∑
i=1

[1 − (1 − xα
i )

β]γ−1(1 − xα
i )

β−1xα
i lnxi

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0

(29)

n
β

+
n

∑
i=1

ln(1 − xα
i )− (γ − 1)

n

∑
i=1

(1 − xα
i )

βln(1 − xα
i )

[1 − (1 − xα
i )

β]

+2λγ
n

∑
i=1

[1 − (1 − xα
i )

β]γ−1(1 − xα
i )

βln(1 − xα
i )

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0

(30)

n
γ
+

n

∑
i=1

ln[1 − (1 − xα
i )

β]− 2λ
n

∑
i=1

[1 − (1 − xα
i )

β]γln[1 − (1 − xα
i )

β]

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0 (31)

n

∑
i=1

1 − 2[1 − (1 − xα
i )

β]γ

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0 (32)

Hence, the MLEs of the parameters are obtained by solving these nonlinear system of equations.
Solving these system of nonlinear equations are complicated, we can therefore use statistical
software to solve the equations numerically.
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5. Simulation Study and Data Analysis

5.1. Simulation Study

Considering (18), the simulation is done for two instances using different parameter values.The
chosen parameter values here are,

• α = 0.1, β = 0.5, γ = 0.8, λ = 0.01

• α = 0.8, β = 1.5, γ = 3, λ = −0.9

As the n increases, mean square error decreases for the selected parameter values given in table 1
and 2. Moreover, the bias is close to zero as the sample size increases. Thus, as the sample size
increases. the estimates become closer to the true parameter values.

Table 1: Simulation study at α = 0.1,β = 0.5,γ = 0.8,λ= 0.01

n Parameter Estimate Bias MSE

25

α
β
γ
λ

0.0188
0.7373
2.9549
-0.2509

-0.0812
0.2373
2.155

-0.2609

0.0066
0.0563
4.6439
0.0681

50

α
β
γ
λ

0.0212
0.6358
2.1147
-0.1819

-0.0788
0.1359
1.3147
-0.2929

0.0062
0.0185
1.7284

0.03681

100

α
β
γ
λ

0.1132
0.4486
0.6076
0.1659

0.0132
-0.0514
-0.1924
0.1559

0.0002
0.0026
0.0370

0.02430

500

α
β
γ
λ

0.0949
0.5348
0.8485
0.1121

-0.0051
0.0348
0.0485
0.1021

2.55e-05
0.0012
0.0024

0.01041

1000

α
β
γ
λ

0.1027
0.5112
0.7835
0.0129

0.003
0.0116
-0.0164
0.003

7.56e-06
0.0001
0.0003

8.81e-06

Table 2: Simulation study at α = 0.8,β = 1.5,γ = 3,λ= -0.9

n Parameter Estimate Bias MSE

25

α
β
γ
λ

12.3475
5.6831
0.1973
-0.2146

11.5475
4.1831
-2.8026
0.6853

133.3457
17.4990
7.8549
0.56964

50

α
β
γ
λ

5.3842
2,2110
0.3943
-0.3780

4.5842
0.7110
-2.6056
0.5219

21.0153
0.50556
6.7896
0.27241

100

α
β
γ
λ

0.4486
1.3816
8.1035
-0.4335

-0.3513
-0.1183
2.1035
0.4665

0.1234
0.0140
4.42471
0.2176

500

α
β
γ
λ

0.6669
1.5409
5.6903
-0.5098

-0.1333
0.0409
2.0577

0.39018

0.0117
0.0017
4.2344
0.1522

1000

α
β
γ
λ

0.7799
1.4994
3.0002
-0.8024

0.0027
0.0012
-0.0164
0.0055

7.51e-06
0.0001
0.0021
0.0004
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5.2. Data Analysis

In this section, we demonstrate the usefulness of the proposed Transmuted Exponentiated
Kumaraswamy TEKw(α, β, γ, λ) distribution. We fit this distribution to a real life data set and
compare the results with some recent efficient models: those corresponding to the Kumaraswamy
(Kw) distribution (Kumaraswamy [11]), Transmuted Kumaraswamy (TKw) distribution (Khan
et.al. [9]) and Exponentiated Kumaraswamy (EKw) distribution (Lemonte et.al. [12]). The
corresponding pdfs are presented below.

• The pdf of the Kw distribution is given by

f (x; α, β) = αβxα−1(1 − xα)β−1, 0 < x < 1

where α, β > 0

• The pdf of the TKw distribution is given by,

f (x; α, β, λ) = αβxα−1(1 − xα)β−1[(1 − λ) + 2λ(1 − xα)β], 0 < x < 1

where α, β > 0 and |λ| < 1.

• The pdf of EKw distribution is given by,

f (x; α, β, γ) = αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1, 0 < x < 1

where α, β, γ > 0

Shasta Reservoir capacity data is used for the purpose. The reservoir is located in California,
United States. The reservoir has a height of 602 ft (183 m), a length of 3460 ft (1050 m), and a
total capacity of 4.552 million acre-ft (5.615 million dam3). The capacity of the Reservoir (after
transformation) for each February from 1991 to 2010 is given by table 3, see Simbolan et. al.
[19]. The analysis is carried out using R software.The parameters are estimated by maximum

Table 3: Shasta Reservoir Capacity Data Each February from 1991 to 2010

Year Transformed
Capacity Year Transformed

Capacity
1991 0.338936 2001 0.768007
1992 0.431915 2002 0.843485
1993 0.759932 2003 0.787408
1994 0.724626 2004 0.849868
1995 0.757583 2005 0.69597
1996 0.811556 2006 0.842316
1997 0.785339 2007 0.828689
1998 0.78366 2008 0.580194
1999 0.815627 2009 0.430681
2000 0.847413 2010 0.742563

likelihood method. Akaike information criterion (AIC), the correct Akaike information criterion
(CAIC), Bayesian information criterion (BIC), Hannan information criterion (HQIC), −2 ln L, the
Kolmogorov-Smirnov (K-S ), Cramer-von Mises and Anderson-Darling goodness-of-fit statistic
and the p-values are considered to compare the four models which are defined as follows.

AIC = −2l + 2k

BIC = −2l + k log(n)
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HQIC = −2l + k log(log(n))

CAIC = −2l + 2kn/(n − k − 1)

where, l denotes the log-likelihood function, k is the number of parameters and n is the sample
size.
The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a
specific distribution. The test statistic is given by,

K − S statistic Dn = sup|F(x)− Fn(x)|

where Fn(x) is the empirical distribution function.

The Cramer-von Mises criterion for testing that a sample x1, x2, ..., xn has been drawn from a
specified continuous distribution F(x)is

ω2 =
∫ +∞

−∞
[Fn(x)− F(x)]2dF(x) (33)

The Anderson-Darling is used to test if a sample of data came from a population with a specific
distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and is given by,

AD = −n − 1
n

n

∑
i=1

(2i − 1)[lnF(Xi) + ln(1 − F(Xn−i+1))] (34)

where, n is the sample size, F(x) is the cdf for the specified distribution, and i is the ith sample,
calculated when the data is sorted in ascending order.
The parameter estimates based on the reservoir capacity data for the four models considered are
given by table 4.

Table 4: The MLEs and log-likelihood (l) estimate of the model parameters for reservoir capacity data.

Distribution Parameter Estimates log-likelihood
α β γ λ

Kw 6.891239 5.215555 - - 15.90481
TKw 6.2451572 5.4432386 -0.5010172 - 16.67048
EKw 24.0913041 64.7302856 0.2273644 - 17.97171

TEKw 24.8114998 83.6984162 0.1786838 -0.5454838 20.32666

The tables 5 gives the estimates of the model parameters, AIC , BIC, CAIC and the HQIC
values.

Table 5: AIC, BIC, CAIC and HQIC statistics of the fitted model in data set

Distribution -2l AIC BIC CAIC HQIC
Kw -31.80962 -27.80962 -25.62753 -27.17804 -25.53863

TKw -33.34096 -27.34096 -24.06783 -26.00763 -26.56991
EKw -35.94341 -29.94341 -26.67028 -28.61008 -29.17236

TEKw -40.65332 -32.65332 -28.28915 -30.30038 -31.62525

From table 4, it shows that the proposed Transmuted Exponentiated Kumaraswamy model has
a maximum value of log likelihood. Table 5 shows that the proposed model has a minimum
values of statistics AIC, BIC, CAIC and HQIC compared to other models. In order to compare
the distributions, we had considered the Kolmogorov-Smirnov (K-S) test, Cramer-von Mises and
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Table 6: Test statistic values and corresponding p values

Distribution
K-S Statistic

(p-value)
Anderson-Darling
Statistic (p-value)

Cramer-Von
Statistic (p-value)

Kw
0.22384
(0.1892)

0.96123
(0.01243)

0.13848
(0.03077)

TKw
0.19077
(0.3543)

0.80139
(0.03188)

0.10962
(0.0768)

EKw
0.18032
(0.4221)

0.65474
(0.07574)

0.085587
(0.1656)

TEKw 0.16457
(0.5365)

0.50999
(0.1762)

0.060932
(0.3527)

Anderson-Darling goodness-of-fit statistics for the Shastha Reservoir Capacity data. From table 6,
it is seen that Transmuted Exponentiated Kumaraswamy model has largest p-value based on K-S
Statistic, Cramer-von Mises and Anderson-Darling statistic. As the results indicate, the proposed
model performed better than other models.

6. Conclusion

In this paper, we have introduced a new generalization of the exponentiated Kumaraswamy
distribution called the transmuted exponentiated Kumaraswamy distribution. The graphical
representations of its density function,cumulative distribution function, hazard rate function and
survival function are obtained. We derived the moments, moment generating function, charac-
teristic function, entropy, mean deviations, quantile function, etc. of the proposed distribution.
Estimation of parameters of the distribution is performed using maximum likelihood method.
A simulation study is performed to validate the estimates of the model parameters. Finally,
TEKw(α,β,γ,λ) distribution is applied to a real data set and compared with other distributions.
It is empirically verified that the new TEKw model is a better model than the other competing
models.
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