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Abstract. Two new zinc azole complexes incorporated Strandberg-type cluster-based solids, namely

(Hpz)6{Zn(pz)4(H2O)2}[{Zn(pz)2P2Mo5O23}2]�8H2O (1) and (Himi)4{Zn(imi)3P2Mo5O23}�7H2O (2) were

crystallized using isomeric azole ligands, i.e., pyrazole (pz) and imidazole (imi), respectively. While solid 1
crystallized in triclinic system with space group P-1 with cell parameters a = 9.5647(15), b = 12.558(2), c =
20.340(3) Å, a = 75.907(7), b = 84.727(6), c = 87.525(7)�, Z = 1; 2 crystallized in orthorhombic system with

space group P212121 having cell parameters a = 12.048(3), b = 19.561(5), c = 20.732(5) Å, Z = 4. Both

pyrazole and imidazole can form a complex with zinc centres to form an extended solid in 1 and a derivatized

Strandberg-type cluster in 2. Interestingly, 1 is a new supramolecular isomer of previously reported solid viz.,

(pz)[{Zn(pz)3}3{P2Mo5O23}]�2H2O and 2 is the only example wherein a zinc imidazole complex has

derivatized a Strandberg-type cluster. Detailed structure analysis of 1 and 2 was carried out, and the role of

tectons in dictating the self-assembly of these solids was evaluated. In addition, a solid-state photolumi-

nescence study was carried out for 1 and 2 at room temperature.

Keywords. Phosphomolybdate cluster; zinc azole complex; supramolecular interactions;

photoluminescence studies.

1. Introduction

During the last decade, our group has been examining

the reaction conditions wherein in-situ generated

phosphomolybdate cluster anion viz., Strandberg-type

{P2Mo5O23}
6- crystallizes along with organic cations

and/or metal complexes.1–3 It has been observed that

cluster anion {P2Mo5O23}
6- can either occur as dis-

crete anion and crystallize with organic cations or

metal complexes or condense through extended

–metal–(Ot-cluster-Ot)–metal– bonds into multi-di-

mensional coordination frameworks.4–6 Occasionally,

self-assembly also results in structures wherein the

{P2Mo5O23}
6- cluster gets derivatized with metal

complexes.7,8 In rare cases, the metal centres form an

extended network (such as coordination polymers)

incorporating the cluster anion.9,10 In all these cases,

the nature of metal centres and organic ligands is

crucial. While the organic ligands can act as buffers,

reducing agents, and templating agents,11,12 the metal

centres can exhibit multiple oxidation states, various

coordination geometries, and even manifest catalytic,

magnetic, or optical properties to the solids.13–16

Our initial investigations involved the self-assembly

of {P2Mo5O23}
6- cluster-based solids and copper

pyrazole complexes under ambient conditions.17 Six

different solids were obtained by varying cop-

per:pyrazole ratio. It was evident that non-bonding
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interactions between the complexes and

{P2Mo5O23}
6- cluster anions dictated the formation of

a particular solid. The results were further explored by

varying the pH and temperature of the reaction

medium.18 Subsequently, the complexing ability of

other transition metal ions with pyrazole was exploited

to crystallize {P2Mo5O23}
6- cluster-based solids (pH

and temperature kept constant).19 The study revealed

that zinc behaves slightly differently from the rest of

the transition metal ions. Firstly, the predominant

coordination number for zinc was four or five. Sec-

ondly, being more basic than other first-row transition

metal ions, it formed other competitive phases, such as

zinc phosphates. This is also reflected in terms of a

limited number of Zn(II) complex incorporated

{P2Mo5O23}
6- cluster-based solids as compared to

other first-row transition metal complexes (refer

Scheme 1; also refer Table S1, Supplementary Infor-

mation). Therefore, the objective of the present work

was to investigate the crystallization of zinc complex

incorporated {P2Mo5O23}
6- cluster-based solids and

systematically vary the reaction parameters to examine

the growth of new solids. Under our reaction condi-

tions, two solids containing Strandberg-type

{P2Mo5O23}
6- cluster anion and zinc azole (pyrazole,

pz and imidazole, imi) complex were obtained. Inter-

estingly, solvent evaporation technique resulted in

(Hpz)6{Zn(pz)4(H2O)2}[{Zn(pz)2P2Mo5O23}2]�8H2O

(1) a new supramolecular isomer20 of previously

reported solid (pz)[{Zn(pz)3}3{P2Mo5O23}]�2H2O.
19

Therefore, the same reaction was carried out using its

position isomer, namely imidazole and (Himi)4
{Zn(imi)3P2Mo5O23}�7H2O (2) was obtained. Inter-

estingly, 2 is the only example of a zinc imidazole

complex derivatized Strandberg-type cluster. A

detailed structure analysis of 1 and 2 could provide

insights into how one could crystallize new solids by

changing the nature of reacting molecular precursors

(tectons). Further, the photoluminescence of 1 and 2
was also measured in the solid state. The results are

significant as only a few examples of zinc complex

incorporated {P2Mo5O23}
6- cluster-based solids are

known. Also, the results indicated that the emission

intensity and wavelength in the Strandberg-type clus-

ter could be tuned by both zinc complex and organic

ligands.

2. Experimental

2.1 Synthesis

ZnCl2 (1.65 mmol, Merck) and pyrazole (4.95 mmol,

Aldrich) were dissolved in 20 mL of distilled water

and added to 20 mL of aqueous solution of Na2-
MoO4�2H2O (1.65 mmol, Merck) kept under stirring.

Immediately, a turbidity was observed. It was dis-

solved using 1M H3PO4 (Merck, 85%). Solvent

evaporation of the resultant solution (pH* 1) resulted

in needle-shaped crystals of 1 (yield: 70–75% based

on Mo). The same procedure was repeated for syn-

thesizing 2 using imidazole (4.95 mmol, Aldrich)

instead of pyrazole (yield: 70–75% based on

molybdenum).

2.2 Characterization

CHN analysis was carried out using ELEMENTAR

Vario EL III CHNS Analyzer. Anal. Found: C, 20.59;

H, 2.56; N, 12.38%: Calcd: C, 20.54; H, 2.60; N,

12.43% for 1 and C, 16.01; H, 2.86; N, 12.34%: Calcd:

C, 15.93; H, 2.91; N, 12.39% for 2. Fourier transform
infrared (Shimadzu FTIR spectrophotometer) spectra

of solids displayed characteristic bands of molybde-

num oxygen stretching (650–690, 750–830 and

900–930 cm-1), P–O stretching (1000–1100 cm-1),

N-H bending (1400–1420 cm-1), C–H bending

(1620–1640 cm-1) and O–H stretching (3100–3400

cm-1) vibrations (refer Figure S1 (SI) for details of

bands for 1 and 2).21 The solids were also character-

ized using powder X-ray diffraction (Malvern Pana-

lytical Aeris diffractometer) and thermogravimetric

analysis (Perkin-Elmer TGA7). UV-visible spectral

data of 1, 2, and ligands in solid state was collected

using a UV-visible spectrophotometer (UV-2600

spectrometer, Shimadzu, Japan). Photoluminescence

studies (PL) were carried out using a Shimadzu

Spectro flouro photometer (RF-5301PC). BRUKER

AXS SMART-APEX diffractometer was used for

X-ray crystallographic studies. Frames were collected

using SAINT.22 The absorption corrections were
Scheme 1. A preview of Strandberg-type cluster-based
solids incorporating Co, Ni, Cu, and Zn complexes.
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carried out with SADABS.23 SHELXTL program was

used for structure solution and refinement.24 Hydrogen

bonding interactions were calculated using

DIAMOND.25 Details of characterization techniques

and X-ray crystallographic studies are available in

Scheme S1 (SI) (also refer to Table 1).

3. Results and discussion

3.1 Crystal structure of (1) and (2)

The asymmetric units of (Hpz)6{Zn(pz)4(H2O)2}

[{Zn(pz)2P2Mo5O23}2]�8H2O (1) consists of two sets

of zinc complexes (represented by Zn1 and Zn2),

{P2Mo5O23}
6- cluster anion (denoted as {P2Mo5} for

simplicity) and protonated pyrazole moieties. The

structure of {P2Mo5O23}
6- cluster anion is the same as

that reported earlier by Strandberg and others.26–28

The distorted tetrahedral zinc complex, {Zn1(pz)2O2},

covalently links adjacent {P2Mo5} clusters into linear

chains propagating along a axis (Figure 1 and

Table S2, SI). The (Hpz)? cation moieties as well as

lattice water molecule, O4W are anchored to the chain

through N-H���O interactions (1.782(6)–2.177(4) Å,

Figure 2(a) and Table S3, SI). These 1-D chains fur-

ther aggregate through H-bonding interactions with

octahedral {Zn2(pz)4(H2O)2}
2? complex to form a

double chain (Figure 2b). While O1W constitutes the

axial bonds of octahedral {Zn2(pz)4(H2O)2}
2? com-

plex; lattice water molecule, O5W is associated with

the complex via H-bonding interactions. The

neighboring double chains are connected via O���O
interactions (3.040(11)–3.195(10) Å) mediated through

lattice water molecules (trimeric water cluster of O2W,

O3W, and O4W) to form supramolecular 2-D sheets

(Figure S2, SI). CH…p interaction (3.231(8) Å) between

neighboring sheets mediated by {N3N4} and {N9N10}

pyrazole moieties facilitates the 3-D crystal packing in 1
(Figure S3, SI).

Crystal structure analysis of (Himi)4{Zn(imi)3P2
Mo5O23}�7H2O (2) indicated the presence of zinc

imidazole complex derivatized {P2Mo5} cluster, four

protonated imidazole moieties and seven water mole-

cules per asymmetric unit of 2 (Figure 1(b)). The zinc

imidazole complex derivatizes the cluster through Zn–

O coordination to form {Zn(imi)3P2Mo5O23} unit,

which further aggregates through non-bonding inter-

actions with four (Himi)? cations. The protonated

imidazole moieties {N13N14} link neighboring

{Zn(imi)3P2Mo5O23} cluster anions through H-bond-

ing interactions (1.801(4)–1.880(4) Å) to form 1-D

chains as shown in Figure 3(a). The adjacent chains

are further connected through {N11N12} moieties and

lattice water molecules (forming a pentameric water

cluster) to form 3-D network, as shown in Figure 3(b).

In the water cluster, the O���O distances were observed

at 2.694(13)-3.057(12) Å (refer to Table S5 and S6

(SI) for H-bonding and O���O interactions, respec-

tively). CH���p interactions along a axis between zinc

imidazole complexes of neighboring 1-D chains, along

with CH���p interactions between {N11N12} moiety

and {N5N6} of the zinc complex, further stabilize the

formation of 3-D network (refer Figure 4

Table 1. Crystallographic details for 1 and 2.

1 2

Formula C54H64Mo10N28O56P4Zn3 C21H32Mo5N14O30P2Zn
Formula weight 3136.66 1567.64
T (K) 293 298
Space Group P-1 P212121
a, Å 9.5647(15) 12.048(3)
b, Å 12.558(2) 19.561(5)
c, Å 20.340(3) 20.732(5)
a, � 75.907(7) 90.00
b, � 84.727(6) 90.00
c, � 87.525(7) 90.00
V, Å3 2359.0(6) 4886(2)
Z 1 4
dcalc, g�cm-3 2.208 2.131
lMoKa, cm

-1 2.209 1.899
k (Å) 0.71073 0.71073
R1(I[2rI), WR2(all) 0.0590, 0.1534 0.0583, 0.1070
GOF 1.063 1.231
Largest difference map hole and peak (eÅ-3) -3.150, 1.630 -0.719, 1.013
CCDC No. 2299536 2299537
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and Table S7, SI). In addition, p���p interaction

between three of the protonated (Himi)? moieties viz.,

{N7N8}, {N9N10} and {N13N14} reinforce the

crystal packing in 2, as shown in Figures S4 and S5

(SI).

3.2 Analysis of solids 1 and 2

Thermogravimetric analysis of 1 and 2 (Figure S6,

SI) showed weight loss in three steps. In 1, the first

weight loss up to 120 �C, corresponding to 4.7%,

could be ascribed to the loss of lattice water mole-

cules (theoretical value: 4.56%). It was followed by a

weight loss of 31.1% (theoretical value: 30.21%)

corresponding to thermal degradation of pyrazole

moieties. The third weight loss (above 780 �C) could
be assigned to the decomposition of cluster anion. On

the contrary, 2 showed an initial weight loss of

7.82% (theoretical value: 7.97%) at 100 �C, corre-

sponding to the loss of seven lattice water molecules.

It was followed by the thermal degradation of imi-

dazole moiety, corresponding to a weight loss of

31.42% (theoretical value: 30.13%). The third weight

loss could be attributed to the decomposition of

cluster anions.

In both 1 and 2, the phase purity of the solids was

established by comparing the experimental powder

X-ray diffraction (PXRD) pattern with the simulated

powder pattern of the single crystal structure, as shown

in Figures S7-S8 (SI).

3.3 Photoluminescence studies

The UV–vis spectra of solids 1 and 2 showed intense

bands at 210–220 and 245–255 nm. It could be

attributed to transitions corresponding to ligand moi-

ety and pp–dp (O?Mo) charge transfer transition in

Strandberg-type cluster anion, respectively (Figure S9,

SI). The photoluminescence property of the free

ligands as well as the solids 1 and 2, was investigated
at room temperature (Figure 5). Both pyrazole and

imidazole exhibited a comparatively weak emission at

370 nm upon photoexcitation at 220 nm, which could

be assigned to ligand-centered p–p* transition.29,30 In

1 and 2, it was observed that the emission intensity of

the hybrid solids was enhanced as compared to the free

ligand. This could be attributed to the rigidity in the

solids after the ligand is coordinated with zinc ions,

which reduces energy loss through radiationless

decay.31–33 Since Zn2? ions are difficult to oxidize or

reduce (on account of their d10 configuration), metal-

to-ligand charge transfer (MLCT) and ligand-to-metal

charge transfer (LMCT) could be ignored.32 There-

fore, the emission spectra could be ascribed to intra-

Figure 1. ORTEP diagram of (a) 1 and (b) 2.
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ligand and ligand-to-ligand charge transition (LLCT)

as suggested by Liu et al. 32 Interestingly, while solid

1 exhibited a comparatively strong emission at 372 nm

upon excitation at 245 nm, a blue shift of 14 nm in the

emission wavelength of solid 2 as compared to the free

ligand was observed. It could be attributed to the

coordination effect of imidazole, ‘‘which increases the

ligand conformational rigidity and asymmetry of the

ligands, thereby reducing the non-radiative decay of

the intra ligand excited state’’ as suggested by Zhang

et al.34

3.4 Chemistry of formation

In the present work, an acidic medium of molybdate

and phosphate precursors, zinc ions, and azole

ligands was allowed to crystallize via solvent

Figure 2. (a) 1-D chains formed between distorted tetrahedral zinc complex, {Zn1(pz)2O2} and {P2Mo5} cluster anions.
The (Hpz)? cation moieties viz. {N9N10}, {N11N12} and {N13N14} as well as lattice water molecule, O4W are attached
to the chain through N–H���O interactions (shown in dashed red lines). (b) The 1-D chains are further connected through
H-bonding interactions (shown in solid red lines) mediated by octahedral {Zn2(pz)4(H2O)2}

2? complex to form a double
chain. {N13N14} moiety has been omitted for clarity.
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evaporation. The low pH favored the protonation of

the organic ligands (pyrazole: pKa = 2.1; imidazole:

pKa = 6.8).35 Therefore, only a few ligand moieties

could complex with zinc ions to form the solids 1
and 2 (equation (i)):

P2Mo5O23f g6�þðHLÞþ þ Zn(L)nðH2OÞm
� �2þ

! 1 and 2
ðiÞ

However, the nature of the zinc complex incorpo-

rated in solids 1 and 2 was different. The formation of

zinc ligand complex can be visualized as a step-by-

step process, and at any instance, the reaction medium

would have more than one kind of zinc ligand

complex:

Zn H2Oð Þ6
� �2þ � ZnL H2Oð Þ5

� �2þ

� ZnL2 H2Oð Þ4
� �2þ � ZnL3 H2Oð Þ3

� �2þ

� ZnL4 H2Oð Þ2
� �2þ

ðiiÞ

Thus, during the formation of solid 1, the tectons

(reacting molecular precursors)36 viz., [Zn1(pz)2
(H2O)4]

2? and [Zn2(pz)4(H2O)2]
2? along with (Hpz)?

units aggregate with {P2Mo5O23}
6- ions to form

extended chains in 1. Zn1 centers exhibit tetrahedral

geometry in the solid state and connect the adjacent

{P2Mo5} cluster anions to form chains. On the other

hand, [Zn2(pz)4(H2O)2]
2? units appear as counterca-

tions in 1. However, in the case of imidazole, when

[Zn(imi)3(H2O)3]
2? tectons aggregate along with

Figure 3. (a) 1-D chains formed via H-bonding interactions mediated by protonated imidazole moieties {N13N14}.
Hydrogen-bonding interactions are shown in dashed red lines. O1-6W represents the associated lattice water molecules. The
interactions between them (O���O) have been depicted in a solid pink color. (b) NH���O interactions mediated by {N11N12}
moiety (shown in brown color) along with lattice water molecules link neighboring chains. Two such neighboring chains
are shown here in cyan and blue color. Dashed red lines represent the inter-chain NH���O interactions.
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(Himi)? and {P2Mo5O23}
6- units, zinc imidazole

complex derivatizes the {P2Mo5} cluster anion by

adopting a tetrahedral geometry. Therefore, 2 exists as

a discrete cluster rather than an extended coordinated

solid. During aggregation, one has no control over the

type of tecton that would participate in the self-

assembly. Crystal packing effects are driven by

favorable non-covalent interactions, which facilitate

the aggregation of appropriate tectons to form solids 1
and 2. However, the presence of the acidic medium

ensures the incorporation of protonated ligand moi-

eties along with metal complexes in the crystal

structure. Thus, slight variations in reaction conditions

(particularly pH, concentration of reactants, and tem-

perature) could result in the crystallization of new

solids. The molar ratio of the reactants plays an

important role in determining the nature of aggregat-

ing tectons in solution. For example, in an acidified

reaction medium containing ZnCl2 and imi, a high imi:
Zn ratio seems to favor the formation of [Zn(imi)x
(H2O)y]

2? tectons (where x = 3–6), leading to solids

[Zn(imi)6Cl2]�4H2O and (Himi)4{Zn(imi)3P2Mo5
O23}�7H2O, 2 (Table S8, SI). On the other hand, if a

low imi: Zn ratio is used during the synthesis (in-

volving solution acidified with HCl); the predominant

tectons would plausibly be [ZnCl4]
2- and [Zn(imi)x

(H2O)y]
2? (where x = 0–2) resulting in crystallization

of solids such as [H2imi]2[ZnCl4] and [NBu4]

[PMo12O37(OH)3Zn4(imi)(Himi)].
It is noteworthy that (Hpz)6{Zn(pz)4(H2O)2}

[{Zn(pz)2P2Mo5O23}2]�8H2O (1) is a new supramolec-

ular isomer of (pz)[{Zn(pz)3}3{P2Mo5O23}]�2H2O.
19

The latter was crystallized using a hydrothermal

technique at pH * 7. The molar ratio of Mo:Zn:L in

the reactants was taken as 3:1:6 rather than 1:1:3 (used

in the present study). At pH * 7, pyrazole moieties

mainly exist as neutral species. Besides, it has been

observed that aggregation of lattice water molecules

seems favorable if synthesis is carried out at room

temperature. Therefore, the formation of less hydrate

Figure 4. View along c axis showing a connection
between one 1-D chain (depicted in cyan) with four others
through {N11N12} moiety (shown in brown color) and
lattice water molecules. The lattice water molecules have
been removed for clarity. Inter-chain NH���O interactions
are shown in solid red lines. CH���p interactions between
{N11N12} moiety and {N5N6} of the zinc complex are
shown in dashed brown lines.

Figure 5. PL spectra of (a) pyrazole and 1 and (b) imidazole and 2.

J. Chem. Sci.          (2024) 136:27 Page 7 of 9    27 



supramolecular isomers viz., (pz)[{Zn(pz)3}3
{P2Mo5O23}]�2H2O under hydrothermal conditions

seems obvious. The high pz: Zn ratio most likely

favored the formation of [Zn(pz)3(H2O)3]
2? tectons

and resulted in the solid (pz)[{Zn(pz)3}3
{P2Mo5O23}]�2H2O. On the contrary, the low pz: Zn
ratio used in the present synthesis results in the

incorporation of [Zn(pz)2(H2O)4]
2? tectons during the

crystallization of 1. The change in molar ratio of

reactants also resulted in variation in zinc complex:

{P2Mo5O23}
6- ratio in the synthesized solids. It was

found to be 1.5:1 in (Hpz)6{Zn(pz)4(H2O)2}

[{Zn(pz)2P2Mo5O23}2]�8H2O (1) as compared to 3:1 in

(pz)[{Zn(pz)3}3{P2Mo5O23}]�2H2O. In (Himi)4{Zn
(imi)3P2Mo5O23}�7H2O (2), zinc complex:

{P2Mo5O23}
6- ratio was 1:1.

4. Conclusions

Our results suggest that subtle variations in synthetic

protocols can influence the formation of new solids. In

the present study, slow evaporation of a solution

containing molybdate and phosphate precursors in the

presence of zinc ions and azole ligands resulted in two

new zinc azole complex-based phosphomolybdates.

Structural analysis of the solids revealed that non-

bonding interactions direct the self-assembly of

molecular units, reinforcing the crystal packing in such

solids. The synthesized solids also exhibited intense

emissions at room temperature, suggesting they may

be good candidates for a potential photoactive

material.

Supplementary Information (SI)

Literature preview; details of characterization techniques

and x-ray crystallographic study; tables and figures showing

non-covalent interactions in 1 and 2; FTIR spectra; TGA

curves; comparison of simulated and experimental PXRD

patterns are available at www.ias.ac.in/chemsci. CCDC

2299536 and 2299537 contain the supplementary crystal-

lographic data for 1 and 2. The data can be obtained freely

via http://www.ccdc.cam.ac.uk/data_request/cif, or by

e-mailing to data_request@ccdc.cam.ac.uk or by contacting

the Cambridge Crystallographic Data Centre (12 Union

Road, Cambridge CB2 1EZ, UK. Fax: ?44 1223 336033)

directly.
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