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ABSTRACT
In this article, we use the fixed point characterization for inverse
Gaussian distribution to develop goodness of fit tests for the same.
First, we propose a test for inverse Gaussian distribution when the
data is complete. We then discuss, how the test procedure can
be modified to incorporate right-censored observations. We use
U-statistics theory to develop the test statistic. The large sample
behaviour of the proposed test statistics for both uncensored and
censored data are studied. We conduct extensive Monte Carlo simu-
lation studies to validate the finite sample behaviour of the proposed
tests. The practical usefulness of the tests is illustrated using real data
sets. We also propose a new jackknife empirical likelihood ratio test
for the inverse Gaussian distribution with unit parameters.
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1. Introduction

The lifetime data can be analysed using either parametric or non-parametric approaches.
If the data can be assured to follow a known lifetime distribution, the parametric approach
yields better results than the non-parametric approach. The goodness of fit tests are
employed to test whether the data follows a specific lifetime model. The inverse Gaussian
(IG) distribution is an important parametric model used for the analysis of lifetime data.
A positive random variable X is said to follow an IG distribution, with parameters μ and
θ , if the density function is given by

f (x) =
√

θ

2πx3
exp

(
−θ(x − μ)2

2μ2x

)
; x > 0, μ, θ > 0. (1)

Here μ > 0 represents the mean and θ > 0 is the shape parameter of the distribution.
Inverse Gaussian originates, as the first passage time of Brownian motion with positive
drift, which later found applications in various fields. For example, IG distribution has
been used in modelling data from stock market prices, submicroscopic particles, biology,
hydrology, meteorology, labour relation, and reliability analysis among others [1,2]. The
lifetime data modelling with IG distribution is extensively studied by Chhikara and Folks
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[3] and further explored by Bhattacharyya and Fries [4] and Whitmore [5]. An important
property of IG distribution is that it is closed under scale transformation as X ∼ IG(μ, θ),
implies cX ∼ IG(cμ, cθ), c > 0.

The extensive use of IG distribution in the modelling of lifetime data motivates
researchers to develop goodness of fit tests for IG distribution. Some earlier tests for the
same can be found in O’Reilly and Rueda [6] and Pavur et al. [7]. Later Ducharme [8]
provided a smooth, consistent test statistic for testing the IG distribution. They also dis-
cussed the test statistic in right-censored case without illustration. A test statistic based
on the empirical Laplace transform for testing IG distribution is developed by Henze and
Klar [9]. Vexler et al. [10] proposed an empirical likelihood ratio test for IG distribution.
A comprehensive study of goodness of fit tests using R packages can be found in Rayner
et al. [11], which includes IG distribution as well. It is well known that lifetime data suf-
fers from censoring, quite often. IG distribution is also used in literature, as a model to
explore lifetime data subjected to right censoring [1,5,12,13]. However, most of the tests,
except Ducharme [8] considered the complete data. Even though Ducharme [8] addressed
the problem of censoring, their test procedures are very complicated. The goodness of fit
tests developed for complete data can not be directly applied to the right-censored samples.
One way to tackle this problem is to use the pseudo-complete data generationmethod pro-
posed by Balakrishnan et al. [14] or other similar techniques. Since these methods do not
allow us to use the original data, information loss may occur. To fill this gap, we develop
an easy-to-implement goodness of fit test for IG distribution, incorporating right-censored
observations. Our test is based on a characterization that uses Stein’s type identity.

In 1972, Stein introduced a natural identity for a random variable whose distribution
belongs to an exponential family [15]. Specifically, let X be a continuous random vari-
able with finite mean μ and variance σ 2. Let c(x) be a continuous function having first
derivative, then X has a normal distribution with mean μ and variance σ 2 if and only if

E(c(X)(X − μ)) = σ 2E(c′(X)),

provided the above expectation exists. This identity is known in literature as Stein’s iden-
tity or Stein’s lemma. Stein’s identity and its applications in inferential procedures have
been extensively studied in the literature. The approximations of normal, Poisson, expo-
nential, and geometric distributions using Stein’smethod are discussed inRoss [16]. Stein’s
type identity for a general class of probability distributions and related characterizations
see Kattumannil [17], Kattumannil and Tibiletti [18] and Kattumannil and Dewan [19].
Using Stein’s type identity Betsch and Ebner [20] developed fixed point characterizations
for continuous distributions.

Recently, using fixed point characterization, Sreedevi and Kattumannil [21], Vaisakh
et al. [22] and Vaisakh et al. [23] proposed goodness of fit tests based on U-statistics for
uniform, Rayleigh and gammadistributions, respectively, for complete data aswell as right-
censored data. We use Stein’s type identity for IG distribution, to develop a goodness of fit
test for IG distribution. Then we discuss, how the testing procedure can be extended to
incorporate right-censored observations.

The rest of the article is organized as follows. In Section 2, Using the Stein’s type
identity for IG distribution, we develop a U-statistic-based goodness of fit test for IG
distribution with shape parameter θ , when we have uncensored data. We also propose a
jackknife empirical likelihood ratio test for the inverse Gaussian distribution when θ = 1.
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In Section 3, we discuss how to modify the test statistic to accommodate right-censored
observations. The asymptotic properties of the test statistics are studied in detail. Exten-
sive Monte Carlo simulation studies are carried out in Section 4 to assess the finite sample
performance of the proposed tests in the presence and absence of censoring. The practi-
cal applicability of the proposed tests are illustrated using real-life datasets in Section 5.
Finally, we conclude the study with a discussion on future works in Section 6.

2. Test statistic: complete data

In this Section, we propose a new goodness of fit test to assess whether the data follows
an IG distribution with shape parameter θ . We use the following characterization theorem
stated in Betsch and Ebner [20] for developing the test statistic.

Theorem 1: If f (.) is a probability density function with the support [0,∞), and X is a real-
valued randomvariable which is continuously differentiable on [0,∞)with

∫ ∞
0 x|f ′(x)| dx <

∞, then X is said to follow the distribution function F(x) with density function f (x) if and
only if, F(t) = E[− f ′(X)

f (X) min{X, t}].

In view of Theorem 1, a random variable X ∼ IG(1, θ) if and only if

F(t) = E
[
1
2

(
θ + 3

X
− θ

X2

)
min{X, t}

]
, t > 0. (2)

2.1. U-statistics-based test

Based on a random sample X1, . . . ,Xn from F, we are interested in testing the null
hypothesis

H0 : F follows inverse Gaussian distribution

against

H1 : F does not follow inverse Gaussian distribution.

For testing the above hypothesis first, we define a departure measure that discriminates
between the null and the alternative hypothesis. In view of (2), we consider the departure
measure

�(F) =
∫ ∞

0

(
E

[
1
2

(
θ + 3

X
− θ

X2

)
min{X, t}

]
− F(t)

)
dF(t). (3)
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Our aim is to simplify �(F), in terms of expectations of the function of random variables.
Consider

�(F) =
∫ ∞

0

(
E

[
1
2

(
θ + 3

X
− θ

X2

)
min{X, t}

]
− F(t)

)
dF(t)

= θ

2

∫ ∞

0

∫ ∞

0
min{x, t} dF(x) dF(t) + 3

2

∫ ∞

0

∫ ∞

0

1
x
min{x, t} dF(x) dF(t)

− θ

2

∫ ∞

0

∫ ∞

0

1
x2

min{x, t} dF(x) dF(t) − 1
2

= �1 + �2 − �3 − 1
2
, (say). (4)

Now,

�1 = θ

2

∫ ∞

0

∫ ∞

0
min{x, t} dF(x) dF(t) = θ

2
E[min{X1,X2}], (5)

and

�2 = 3
2

∫ ∞

0

∫ ∞

0

1
x
min{x, t} dF(x) dF(t)

= 3
2

[∫ ∞

0

∫ ∞

x
dF(t) dF(x) +

∫ ∞

0

∫ ∞

0

t
x
I(t < x) dF(x) dF(t)

]
= 3

4
+ 3

2
E

[
X2

X1
I(X2 < X1)

]
, (6)

where I(A) denotes the indicator function of a set A. Also

�3 = θ

2

∫ ∞

0

∫ ∞

0

1
x2

min{x, t} dF(x) dF(t)

= θ

2

[∫ ∞

0

1
x

∫ ∞

x
dF(t) dF(x) +

∫ ∞

0

∫ ∞

0

t
x2

I(t < x) dF(x) dF(t)
]

= θ

4
E

[
1

min{X1,X2}
]

+ θ

2
E

[
X2

X2
1
I(X2 < X1)

]
. (7)

Substituting (5)–(7) in (4), we obtain

�(F) = θ

2
E

[
min{X1,X2} − 1

2min{X1,X2}
]

+ 3
2
E

[
X2

X1
I(X2 < X1)

]
− θ

2
E

[
X2

X2
1
I(X2 < X1)

]
+ 1

4
. (8)

Now we use U-statistics theory to develop the test statistic. Define a symmetric kernel
h1(X1,X2) = min{X1,X2} − 1

2min{X1,X2} . Then a U-statistic defined as

U1 = 1(n
2
) n∑

i=1

n∑
j=1,j<i

h1(Xi,Xj)
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is an unbiased estimate for E[min{X1,X2} − 1
2min{X1,X2} ]. Consider another symmetric

kernel h2(X1,X2) = 1
2 [

X1
X2
I(X1 < X2) + X2

X1
I(X2 < X1)], then a U-statistic defined by

U2 = 1(n
2
) n∑

i=1

n∑
j=1,j<i

h2(Xi,Xj) (9)

is an unbiased estimate for E[X2
X1
I(X2 < X1)].

Let h3(X1,X2) = 1
2 [

X1
X2
2
I(X1 < X2) + X2

X2
1
I(X2 < X1)], then a U-statistic defined by

U3 = 1(n
2
) n∑

i=1

n∑
j=1,j<i

h3(Xi,Xj) (10)

is an unbiased estimate for E[X2
X2
1
I(X2 < X1)].

Let θ̂ = ( 1n
∑n

i=1(
1
Xi

− 1))−1 is an unbiased and consistent estimator of θ . Then, the test
statistic �̂ is given by

�̂ = θ̂

2
U1 + 3

2
U2 − θ̂

2
U3 + 1

4
. (11)

We reject the null hypothesisH0, against the alternative hypothesisH1 for large values of �̂.
We now study the asymptotic properties of the statistic �̂. Since U1 and U2 are consistent
estimators, we have �̂ converges in probability to � as n → ∞.

Next, we find the asymptotic distribution of the test statistics. Define

�̂′ = θ

2
U1 + 3

2
U2 − θ

2
U3 + 1

4
.

Since θ̂ is a consistent estimator of θ , then by Slutsky’s theorem the asymptotic distri-
butions of

√
n(�̂ − �) and

√
n(�̂′ − E(�′)) are the same. Also as n → ∞,

√
n(�̂ − �)

converges in distribution to normal random variable with mean 0 and variance σ 2, where
σ 2 = Var(E[h(X1,X2)|X1]) and h(X1,X2) is a symmetric kernel of degree 2 given by

h(X1,X2) = 1
2

[
2min{X1,X2} − 1

min{X1,X2} + X1

X2
I(X1 < X2) + X2

X1
I(X2 < X1)

− X1

X2
2
I(X1 < X2) − X2

X2
1
I(X2 < X1)

]
. (12)

To calculate σ 2, consider

E[min{X1,X2}|X1 = x] = E[xI(x < X2) + X2I(X2 ≤ x)]

= x
∫ ∞

x
dF(y) +

∫ x

0
y dF(y)

= xF̄(x) +
∫ x

0
y dF(y). (13)
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Also,

E
[

1
min{X1,X2} |X1 = x

]
= 1

x
F̄(x) +

∫ x

0
y dF(y)

E
[
X1

X2
I(X1 < X2)|X1 = x

]
= x

∫ ∞

x

1
y
dF(y)

E
[
X2

X1
I(X2 < X1)|X1 = x

]
= 1

x

∫ x

0
y dF(y)

E
[
X1

X2
2
I(X1 < X2)|X1 = x

]
= x

∫ ∞

x

1
y2

dF(y)

E
[
X2

X2
1
I(X2 < X1)|X1 = x

]
= 1

x2

∫ x

0
y dF(y).

Then, we have

σ 2 = Var
[
θ

2

(
XF̄(X) +

∫ X

0
y dF(y)

)
− θ

4

(
1
X
F̄(X) +

∫ X

0
y dF(y)

)
+ 3

4

(
X

∫ ∞

X

1
y
dF(y) + 1

X

∫ X

0
y dF(y)

)
− θ

4

(
X

∫ ∞

X

1
y2

dF(y) − 1
X2

∫ X

0
y dF(y)

)]
. (14)

Note that � = 0 under null hypothesis H0. Hence, under H0, as n → ∞,
√
n�̂ converges

in distribution to a normal random variable with mean zero and variance σ 2
0 , where σ 2

0 is
the value of σ 2 evaluated under the null hypothesis.

Let σ̂ 2
0 be a consistent estimator of σ 2

0 , then at a chosen significance level, α, we reject
H0 against H1 if √

n|�̂|
σ̂ 2
0

> Z α
2
,

where Zα is the upper α-percentile point for the standard normal distribution. Finding a
consistent estimator of the null variance σ 2

0 is difficult. Hence we find the critical region of
the proposed test using Monte Carlo simulation. We determine lower (c1) and upper (c2)
quantiles in such a way that P(�̂ < c1) = P(�̂ > c2) = α/2. The finite sample behaviour
of the test is evaluated through an extensive Monte Carlo simulation study. The results of
the simulation study are reported in Section 4.

Remark 2.1: We can note that, the assumption μ = 1, does not make any impact on the
testing procedure, since the family of inverse Gaussian distribution is closed under scale
transformations as X ∼ IG(μ, θ), implies X

μ ∼ IG(1, θ
μ).

2.2. Jackknife Empirical Likelihood (JEL) based test

We also develop a JEL based goodness-of-fit test for IG distribution with unit parameters.
For developing JEL based test, consider the jackknife pseudo values corresponding to the
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test statistic given in (11). The jackknife pseudo values, βi, i = 1, 2, . . . , n are defined as

βi = n�̂ − (n − 1)�̂i, i = 1, 2, . . . , n

where �̂i is the value of the test statistic by deleting the ith observation from the sample
X1, . . . ,Xn. Let q = (q1, . . . , qn) be a probability vector, then

∏n
i=1 qi subject to

∑n
i=1 qi =

1 attains its maximum value at n−n at qi = 1
n . Then the JEL ratio for testing the IG

distribution with parameters (1, 1), based on the departure measure �(F) is defined as

l(�) = max

{ n∏
i=1

nqi;
n∑
i=1

qi = 1,
n∑
i=1

qiβi = 0

}
.

Then using the Lagrange multipliers method, we obtain qi as

qi = 1
n(1 + νβi)

,

and ν satisfies

ν = 1
n

n∑
i=1

βi

1 + νβi
= 0,

provided

min
1≤k≤n

βk < �̂ < min
1≤k≤n

βk.

For more details on this, see Jing et al. [24]. Hence the jackknife empirical log-likelihood
ratio is given by

ln l(�) = − ln
n∑

i=1
ln(1 + νβi).

Now we reject the null hypothesis against the alternate hypothesis for large values of
ln l(�). To construct the critical region of the JEL-based test, we find the asymptotic null
distribution of the jackknife empirical log-likelihood ratio. Then usingWilk’s theorem, we
reject the null hypothesis against the alternate at a significance level, α, if

−2 ln l(�) > χ2
1,α ,

where χ2
1,α is the upper α-percentile point of the χ2 distribution with one degree of

freedom.

3. Test statistic: censored data

Next we discuss how the right-censored observations can be incorporated in the pro-
posed testing method. Consider the right-censored data (Y , δ), with Y = min(X,C) and
δ = I(X ≤ C), where C is the censoring time. We assume censoring times and lifetimes
are independent. Now we are interested to test the hypothesis discussed in Section 2 based
on n independent and identical observation {(Yi, δi), 1 ≤ i ≤ n}. As we developed the test
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based on U-statistics for right-censored data, we used the same departure measure �(F)

given in (1). For that purpose, we consider (8) given in Section 2

�(F) = θ

2
E

[
min(Y1,Y2) − 1

2min(Y1,Y2)

]
+ 3

2
E

[
Y2

Y1
I(Y2 < Y1)

]
− θ

2
E

[
Y2

Y1
I(Y2 < Y1)

]
+ 1

4
.

To develop the test statistic for right-censored case, we estimate each quantity in�(F)using
U-statistics for right-censored data [25].

An estimator of E(min(Y1,Y2) − 1
min(Y1,Y2) is given by

Û1c = 1
n(n − 1)

n∑
i=1

n∑
j<i;j=1

(
min(Yi,Yj) − 1/min(Yi,Yj)

)
δiδj

K̂c(Yi)K̂c(Yj)
, (15)

provided K̂c(Yi) > 0 and K̂c(Yj) > 0, with probability 1 and K̂c is the Kaplan-Meier
estimator of Kc, the survival function of C. Again, an estimator of E[Y2Y1 I(Y2 < Y1)] is
given by

Û2c = 1
n(n − 1)

n∑
i=1

n∑
j<i;j=1

(YiYj I(Yi < Yj) + Yj
Yi I(Yj < Yi))δiδj

K̂c(Yi)K̂c(Yj)
. (16)

Similarly, an estimator of θ in the right-censored case is given by

θ =
(
1
n

n∑
i=1

δi

YiK̂c(Yi)
− 1

)−1

. (17)

Using the estimators given in Eqs. (15)–(17), we obtain the test statistic as

�̂c = θ̂

2
Û1c + 2

3
Û2c − θ̂

2
Û1c + 1

4
. (18)

Hence in the right-censored case, we reject H0 in favour of H1 for large values of �̂c.
To obtain the limiting distribution of �̂c, let Nc

i (t) = I(Yi ≤ t, δi = 0) be the count-
ing process corresponds to the censoring variable Ci. Denote Ri(t) = I(Yi ≥ t). Also let
σ 2
c be the hazard rate of C. The martingale associated with this counting process Nc

i (t) is
given by

Mc
i (t) = Nc

i (t) −
∫ t

0
Ri(u)σ 2

c (u) du.

Let G(x, y) = P(X1 ≤ x,Y1 ≤ y, δ = 1), x ∈ X , H̄(t) = P(Y1 > t) and

w(t) = 1
H̄(t)

∫
X×[0,∞)

h1(x)
Kc(y−)

I(y > t) dG(x, y),
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where h1(x) = E(h(X1,X2)|X1 = x). The proof of next result follows from Theorem 1 of
Datta et al. [25] for a particular choice of the kernel

h(X1,X2) = θ

2

[
min(X1,X2) − 1

2min(X1,X2)

]
+ 3

2

[
X2

X1
I(X2 < X1)

]
− θ

2

[
X2

X1
I(X2 < X1)

]
+ 1

4
.

Theorem 2: Let

h1(x) = θ

2
E

[
min(x,Y2) − 1

2min(x,Y2)

]
+ 3

2
E

[
Y2

x
I(Y2 < x)

]
− θ

2
E

[
Y2

x
I(Y2 < x)

]
+ 1

4
.

Suppose the conditions

E
[
θ

2
E

[
min(Y1,Y2) − 1

2min(Y1,Y2)

]
+ 3

2
E

[
Y2

Y1
I(Y2 < Y1)

]
−θ

2
E

[
Y2

Y1
I(Y2 < Y1)

]
+ 1

4

]2
< ∞,

∫
X×[0,∞)

h21(x)
K2
c (y)

dG(x, y) < ∞ and
∫ ∞
0 w2(t)σ 2

c (t)dt < ∞ holds.

As n → ∞,
√
n(�̂c − �(F)) converges in distribution to Gaussian random variable with

mean zero and variance 4σ 2
c , where σ 2

c is given by

σ 2
c = Var

(
h1(X)δ1

Kc(Y1−)
+

∫
w(t)dMc

1(t)
)
.

Next we find an estimator of σ 2
c using the reweighed techniques. An estimator of σ 2

c is
given by

σ̂ 2
c = 4

(n − 1)

n∑
i=1

(Vi − V̄)2,

where

Vi = ĥ1(Xi)δi

K̂c(Yi)
+ ŵ(Xi)(1 − δi) −

n∑
j=1

ŵ(Xi)I(Xi > Xj)(1 − δi)∑n
i=1 I(Xi > Xj)

,

V̄ = 1
n

n∑
i=1

Vi, ĥ1(X) = 1
n

n∑
i=1

h(X,Yi)δi

K̂c(Yi−)
, R(t) = 1

n

n∑
i=1

I(Yi > t)

and

ŵ(t) = 1
R(t)

n∑
i=1

ĥ1(Xi)δi

K̂c(Yi)
I(Xi > t).
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Let σ̂ 2
0c be the value of σ̂

2
c evaluated underH0. Under right censored situation, we reject

the null hypothesis H0 against the alternative H1 at a significance level α, if
√
n|�̂c|
σ̂0c

> Zα/2.

The results of the Monte Carlo simulation which assess the finite sample performance of
the test is also reported in Section 4.

4. Simulation study

The finite sample performance of the proposed test procedures is evaluated through exten-
sive Monte Carlo simulation studies using R software (version 4.1.3). We compare the
empirical type I error and power of our test with the existing tests for complete data, to
show the competitiveness of the proposed tests, in both uncensored and censored cases.
The power of the tests is evaluated against various alternatives, which are the commonly
employed parametric lifetime models. In the censored case, we evaluate the empirical
power at various censoring percentages, to depict the effect of censoring on the proposed
test.

4.1. Uncensored case

Wefind the empirical type I error and empirical power of the proposed test and other com-
petitive tests to conduct a comprehensive study. We simulate random samples of different
sizes (n = 10, 20, 30, 40, 50) from IGdistributionwith parameter value θ = 1 or 2.We then
calculate the test statistic value for the simulated random samples and based on the value
of it, we accept or reject the null hypothesis. This procedure is repeated ten thousand times
and the proportion of times, the null hypothesis rejected is observed. This value gives the
empirical type I error of the proposed test.

We follow a similar procedure to calculate the empirical power of the proposed test. To
find the empirical power, lifetime random variables are generated from different choices of
alternatives includingWeibull, gamma, log-normal, Pareto, and half-normal distributions.
The choices of alternative distributions along with the corresponding cumulative distribu-
tion functions (CDF), employed in this study are listed in Table 1. To calculate the empirical
power of the test, first, we generate lifetime data from the desired alternative and calculate
the test statistic.We then estimate themaximum likelihood estimator θ̂ of the parameter θ ,
of the generated data. Next, to compute the simulated critical points, we generate a sample
of size n from inverse Gaussian distribution with parameter θ̂ , 10,000 times. Based on the
test statistic value and the simulated critical points, we determine whether the null hypoth-
esis is to be rejected or not. The entire procedure is repeated 10000 times and the empirical
power is computed as the proportion of rejections of the test.

We test the competitiveness of our test with the classical tests for goodness of fit include
Kolmogorov–Smirnov (KS), Cramer–vonMises (CvM) andAnderson–Darling (AD) tests.
Moreover, we compare the competitiveness of our test with the another three tests proposed
specifically for testing IG distribution, given by Henze and Klar [9] and González-Estrada
and Villaseñor [26]. In Henze and Klar [9], they developed a test statistic for goodness of
fit for IG distribution as the weighted integrals over the squared modulus of a measure of
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Table 1. Choices of alternative distributions with the corresponding CDFs.

Distribution CDF

Weibull F1(x) = 1 − e(− x
λ )k , x > 0, k, λ > 0

Rayleigh F2(x) = 1 − exp{−x2

2λ2
}, x > 0, λ > 0

Chi-square F3(x) = 1
�( k

2 )
γ ( k2 ,

x
2 ), x > 0, k > 0 and γ (k, xλ ) is the lower incomplete gamma function

Gamma F4(x) = 1
�(k) γ (k, xλ ), x > 0, k, λ > 0 and γ (k, xλ ) is the lower incomplete gamma function

Log-normal F5(x) = �( ln x−μ
λ ), x > 0,−∞ < μ < ∞, λ > 0 where�(x) is the cumulative distribution function of

the standard normal random variable
Half-normal F6(x) = erf ( x

λ
√
2
), x > 0, λ > 0, where erf is the error function

Pareto F7(x) = (λ/x)kx > 0, k, λ > 0

deviation of the empirical distribution of given data from the family of inverse Gaussian
laws, expressed by means of the empirical Laplace transform. A variance ratio test for the
goodness of fit test for IG distribution is proposed in Henze and Klar [9] by exploiting
the relation between gamma and IG distributions, while Villaseñor et al. [27] developed
by transforming IG variables to normal variables and then by employing Shapiro-Wilk
test for normality. Illustration of both these tests are explained in Gonzáalez-Estrada and
Villaseñor[26]. We use the above three tests to compare the performance of the proposed
test statistic in simulation studies. We denote the test by Henze and Klar [9] as ‘HK’ and
the tests by Henze and Klar [9] and Villaseñor et al. [27] as ‘EV1’ and ‘EV2’ in the tables
presenting simulation results. The expressions for the classical test statistics KS, CvM and
AD are also summarized below.

The Kolmogorov–Smirnov test statistic is given by KS=max{D+,D−} where

D+ = max
i=1,2,...,n

(
i
n

− F0(X(i))

)
and D− = max

i=1,2,...,n

(
F0(X(i)) − i − 1

n

)
;

the Cramer-von Mises test statistic is given by

CvM = 1
12n

+
n∑

i=1

(
F0(X(i)) − 2i − 1

2n

)2
;

and the Anderson-Darling test statistic is given by AD = −n−S, where

S =
n∑
i=1

2i − 1
n

[ln F0(X(i)) + ln(1 − F0(Xn+1−i))],

where F0(.) is the specified distribution function.
The calculated empirical type I error of the proposed test and other competing tests are

reported in Table 2. The same is visually represented in Figure 1.
From Table 2 and Figure 1, we can observe that as n increases, the test �̂ stabilizes near

the chosen level of significance for bothα = 0.05 andα = 0.01. This observation is true for
both choices of parameters 1 and 2. The tests HK, EV1, and EV2 exhibit similar behaviour.
The classical tests KS, CvM, and AD provide type I error values slightly higher than the
desired significance level for both choices of α.

The results of the simulation study for power comparison are tabulated in Tables 3 and 4.
Table 3 gives the power of �̂ for different alternatives at significance level α = 0.01 and
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Figure 1. Plot of empirical type I error at α = 0.01 and α = 0.05.

Table 2. Comparison of empirical type I error at α = 0.01 and α = 0.05.

n α �̂ HK EV1 EV2 KS CvM AD

InvG (1, 1) 10 0.01 0.0110 0.0094 0.0128 0.0077 0.0478 0.0323 0.0510
20 0.0101 0.0093 0.0112 0.0110 0.0345 0.0214 0.0262
30 0.0088 0.0096 0.0085 0.0100 0.0301 0.0178 0.0191
40 0.0106 0.0109 0.0099 0.0104 0.0276 0.0153 0.0168
50 0.0110 0.0094 0.0097 0.0112 0.0293 0.0146 0.0153

InvG (1, 1) 10 0.05 0.0519 0.0441 0.0559 0.0437 0.1067 0.1102 0.1259
20 0.0495 0.0481 0.0549 0.0474 0.0945 0.0759 0.0909
30 0.0582 0.0570 0.0502 0.0485 0.0945 0.0778 0.0775
40 0.0455 0.0475 0.0492 0.0476 0.0857 0.0672 0.0747
50 0.0486 0.0526 0.0474 0.0472 0.0810 0.0641 0.0666

InvG (1, 2) 10 0.01 0.0109 0.0108 0.0137 0.0093 0.0355 0.0265 0.0347
20 0.0121 0.0093 0.0082 0.0095 0.0220 0.0176 0.0182
30 0.0101 0.0088 0.0099 0.0110 0.0237 0.0164 0.0146
40 0.0113 0.0113 0.0100 0.0093 0.0198 0.0122 0.0134
50 0.0138 0.0102 0.0111 0.0109 0.0176 0.0139 0.0105

InvG (1, 2) 10 0.05 0.0526 0.0535 0.0476 0.0380 0.0903 0.0894 0.1017
20 0.0522 0.0493 0.0532 0.0474 0.0745 0.0657 0.0681
30 0.0531 0.0509 0.0513 0.0474 0.0716 0.0660 0.0631
40 0.0538 0.0508 0.0460 0.0470 0.0635 0.0593 0.0586
50 0.0499 0.0515 0.0543 0.0481 0.0668 0.0550 0.0591

Table 4 represents the same when α = 0.05. The results in Tables 3 and 4 are portrayed
visually in Figures 2 and 3. Tables 3 and 4 and Figures 2 and 3 clearly show that, the newly
developed test achieves a higher empirical power compared to all the other goodness of fit
tests. Additionally, the power of all tests increases with sample size. Notably, the proposed
test demonstrates high power even for small sample sizes, highlighting its efficiency. Fur-
thermore, the proposed test attains the maximum power against the alternatives, Rayleigh,
lognormal and Pareto distributions for the chosen parameter settings. Among the tests, the
HK test exhibits the lowest power. In contrast, EV1 and EV2 deliver comparable results.
The classical goodness-of-fit tests generally have lowpower for small sample sizes (n = 10),
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Figure 2. Plot of empirical power when α = 0.01.

Figure 3. Plot of empirical power when α = 0.05.

though their performance improves significantly with larger sample sizes. This could be
attributed to the higher rejection rates under the null hypothesis associated with these
classical tests. The proposed test consistently demonstrates robust power, even with small
sample sizes, confirming its effectiveness.

4.2. Censored case

We carry out Monte Carlo simulation studies to calculate the empirical type I error and
the empirical power of the test statistic proposed for right-censored data.We generate ran-
dom samples of sizes n = 50, 75, 100, 200 and 400 to evaluate the empirical type I error
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Table 3. Comparison of empirical power for different alternatives (α = 0.01).

n �̂ HK EV1 EVf2 KS CvM AD

Weibull (1,2) 10 0.3839 0.0008 0.2274 0.2208 0.0742 0.0621 0.0567
20 0.6293 0.0235 0.4595 0.4557 0.2204 0.2045 0.1843
30 0.7999 0.2424 0.6297 0.6269 0.3571 0.3438 0.3180
40 0.8840 0.4924 0.7519 0.7507 0.5019 0.4876 0.4592
50 0.9297 0.7253 0.8324 0.8409 0.6109 0.6032 0.5765

Weibull (1,3) 10 0.6825 0.1433 0.2305 0.2253 0.0747 0.0652 0.0579
20 0.8860 0.8416 0.4546 0.4612 0.2202 0.2060 0.1879
30 0.9584 0.9564 0.6230 0.6237 0.3586 0.3401 0.3158
40 0.9878 0.9878 0.7440 0.7421 0.4914 0.4813 0.4560
50 0.9939 0.9990 0.8314 0.8339 0.6078 0.5952 0.5684

Rayleigh (1.5) 10 0.8000 0.6986 0.0923 0.0736 0.6993 0.4328 0.5333
20 0.9924 0.9749 0.2110 0.1639 0.9683 0.6887 0.7271
30 0.9996 0.9972 0.3244 0.2504 0.9982 0.8341 0.8516
40 1.0000 0.9998 0.4093 0.3248 0.9999 0.9133 0.9232
50 1.0000 1.0000 0.4885 0.3958 1.0000 0.9493 0.9559

Chi-Square (2) 10 0.3654 0.0012 0.2141 0.2072 0.0665 0.1731 0.1915
20 0.6525 0.0381 0.4507 0.4493 0.2203 0.4072 0.3699
30 0.7911 0.2267 0.6271 0.6310 0.3594 0.5621 0.5137
40 0.8928 0.4702 0.7516 0.7482 0.4946 0.6706 0.6156
50 0.9353 0.7269 0.8323 0.8330 0.6099 0.7631 0.7071

Gamma (2, 1) 10 0.6020 0.4683 0.0895 0.0676 0.5404 0.2951 0.3868
20 0.9444 0.8891 0.1869 0.1518 0.9076 0.5236 0.5732
30 0.9942 0.9838 0.2672 0.2189 0.9883 0.6764 0.7168
40 0.9996 0.9982 0.3564 0.2920 0.9990 0.7846 0.8103
50 0.9998 0.9997 0.4291 0.3566 0.9998 0.8552 0.8706

Log-normal (1,1) 10 0.9531 0.9494 0.0344 0.0234 0.9303 0.9720 0.9823
20 0.9979 0.9958 0.0571 0.0396 0.9995 0.9999 0.9999
30 0.9999 0.9999 0.0881 0.0587 1.0000 1.0000 1.0000
40 1.0000 1.0000 0.1051 0.0690 1.0000 1.0000 1.0000
50 1.0000 1.0000 0.1286 0.0833 1.0000 1.0000 1.0000

Half-normal (2.5) 10 0.5140 0.0156 0.2468 0.2309 0.5447 0.2606 0.2957
20 0.8094 0.4056 0.4894 0.4719 0.9152 0.5398 0.5058
30 0.9122 0.7915 0.6580 0.6486 0.9898 0.6873 0.6525
40 0.9653 0.9270 0.7764 0.7687 0.9989 0.8028 0.7615
50 0.9857 0.9652 0.8599 0.8500 0.9999 0.8727 0.8321

Pareto (1, 1) 10 0.9791 0.0001 0.0240 0.0566 0.9675 0.5886 0.9372
20 0.9994 0.0004 0.1123 0.2401 0.9892 0.9671 0.9988
30 0.9999 0.0152 0.2431 0.4107 0.9999 0.9988 0.9999
40 1.0000 0.1348 0.3972 0.5661 1.0000 1.0000 1.0000
50 1.0000 0.5183 0.5582 0.6958 1.0000 1.0000 1.0000

and power of the proposed test in the presence of censoring. Lifetimes are generated from
inverse Gaussian distribution with parameters (1, 1) to calculate the empirical type I error.
The computational procedures given in the absence of censoring to calculate empirical type
I error/ power is used to calculate the same in the presence of censoring also. We consider
different choices of alternatives, as in uncensored case for finding the empirical power. The
percentage of censoring is chosen to be 20% or 40%, to examine the effect of censoring on
the proposed test statistic. In all cases, the censoring random variable C is generated from
an exponential distribution with parameter b, where b is chosen such that P(T > C) = 0.2
or 0.4. Re-weighting technique explained in Section 3 is used to estimate the variance
of �̂c.
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Table 4. Comparison of empirical power for different alternatives (α = 0.05).

n �̂ HK EV1 EV2 KS CvM AD

Weibull (1,2) 10 0.5705 0.0501 0.3502 0.3234 0.5388 0.4438 0.4498
20 0.7848 0.3908 0.5901 0.5709 0.7283 0.6976 0.6837
30 0.8915 0.6932 0.7452 0.7360 0.8886 0.8320 0.8166
40 0.9427 0.8578 0.8409 0.8375 0.9187 0.9080 0.8989
50 0.9687 0.9426 0.9021 0.8969 0.9595 0.9420 0.9338

Weibull (1,3) 10 0.7995 0.7056 0.3496 0.3225 0.8905 0.7161 0.7696
20 0.9321 0.9306 0.5900 0.5714 0.9262 0.9304 0.9357
30 0.9816 0.9785 0.7450 0.7358 0.9598 0.9515 0.9568
40 0.9919 0.9915 0.8407 0.8370 0.9881 0.9840 0.9873
50 0.9988 0.9985 0.9020 0.8968 0.9971 0.9979 0.9980

Rayleigh (1.5) 10 0.9343 0.8786 0.1857 0.1435 0.8810 0.7122 0.7612
20 0.9982 0.9935 0.3345 0.2599 0.9940 0.9049 0.9191
30 1.0000 0.9995 0.4497 0.3713 0.9999 0.9703 0.9757
40 1.0000 1.0000 0.5397 0.4517 1.0000 0.9909 0.9929
50 1.0000 1.0000 0.6228 0.5300 1.0000 0.9965 0.9969

Chi-Square (2) 10 0.5721 0.0303 0.3422 0.3216 0.1431 0.1281 0.1140
20 0.7773 0.3391 0.5935 0.5797 0.3482 0.3284 0.3034
30 0.8804 0.6972 0.7304 0.7218 0.5167 0.5049 0.4781
40 0.9385 0.8463 0.8313 0.8262 0.6473 0.6420 0.6152
50 0.9656 0.9326 0.8999 0.8983 0.7643 0.7602 0.7388

Gamma (2, 1) 10 0.8481 0.7622 0.1732 0.1277 0.7783 0.8339 0.8493
20 0.9859 0.9749 0.3063 0.2486 0.9766 0.9886 0.9886
30 0.9985 0.9984 0.4016 0.3375 0.9889 0.9897 0.9896
40 1.0000 0.9997 0.4937 0.4257 1.0000 1.0000 1.0000
50 1.0000 1.0000 0.5545 0.4867 1.0000 1.0000 1.0000

Log-normal (1,1) 10 0.9749 0.9558 0.0976 0.0694 0.9638 0.9531 0.9549
20 0.9987 0.9958 0.1384 0.1025 0.9986 0.9898 0.9857
30 0.9999 1.0000 0.1812 0.1320 1.0000 1.0000 1.0000
40 1.0000 1.0000 0.2055 0.1527 1.0000 1.0000 1.0000
50 1.0000 1.0000 0.2366 0.1760 1.0000 1.0000 1.0000

Half-normal (2.5) 10 0.6978 0.2459 0.3618 0.3283 0.6665 0.5686 0.5780
20 0.8884 0.7993 0.6206 0.5897 0.8799 0.8158 0.8066
30 0.9606 0.9453 0.7670 0.7509 0.9579 0.9129 0.9100
40 0.9864 0.9802 0.8612 0.8482 0.9798 0.9600 0.9606
50 0.9960 0.9921 0.9127 0.9064 0.9872 0.9834 0.9797

Pareto (1, 1) 10 0.9886 0.0015 0.1406 0.2061 0.9528 0.9468 0.9980
20 0.9998 0.0435 0.3462 0.4566 0.9999 0.9999 1.0000
30 1.0000 0.4225 0.5504 0.6489 1.0000 1.0000 1.0000
40 1.0000 0.8100 0.7077 0.7733 1.0000 1.0000 1.0000
50 1.0000 0.9407 0.8247 0.8646 1.0000 1.0000 1.0000

As mentioned earlier, the existing goodness of fit tests in literature, consider com-
plete data only. Hence, to compare the efficiency of the proposed test, we generate
pseudo-complete random sample using the method proposed by Balakrishnan et al. [14].
Following Balakrishnan et al. [14], to generate the pseudo-complete sample, for each
Yi with δi = 0, a value Ŷi is generated as Ŷi = F−1

0 (ζi), where ζi ∼ U[F0(Ci), 1), where
F0(.) is the corresponding distribution function and Ci is the censoring time for i =
1, 2, . . . , n. The corresponding values of censored observations in the original sample are
then replaced by these generated values to obtain the pseudo-complete sample. Goodness
of fit tests developed for complete sample can be then applied to the pseudo-complete
sample.
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To compare the proficiency of the proposed test for censored samples, we consider the
same tests described in Section 4.2. We perform the simulation study for all the choices
of alternatives, since the results are similar, we present the results for gamma, log-normal,
Weibull and Rayleigh distributions only. First, we generate a censored sample from the
chosen alternative with 20% or 40% of censored observations, while the censored obser-
vations are generated from an exponential distribution as mentioned above. The censored
sample is then converted to pseudo-complete sample using the method explained above.
Results of the simulation study when the censoring percentage is chosen as 20% are pre-
sented in Table 5 and the same for 40% censoring is shown in Table 6. In Tables 5 and 6,
values corresponding to inverse Gaussian distribution give the empirical type I error and
all the values corresponding to all other choices of alternatives give the empirical power of
the test.

From Tables 5 and 6, it is evident that, as n increases, the empirical type I error of the
test converges to the specified significance levels α = 0.01 or α = 0.05. Additionally, for all
alternative distributions considered, the proposed test demonstrates superior power com-
pared to tests based on the pseudo-complete sample. Specifically, the tests EV1 and EV2
exhibit lower power relative to others, while the HK test and the classical tests KS, CvM,
and AD provide higher power than EV1 and EV2 but fall short of the performance of
the newly proposed test. This pattern holds true across both significance levels and under
various censoring scenarios. This can be explained by the fact that the proposed test incor-
porates the censored lifetimes as such in computing the test statistic, while the other tests
based on pseudo-complete sample need to convert the censored lifetimes into observed
lifetimes. The empirical power of the test increases with increase in n, while it shows a
decreasing tendency with the increase in censoring percentage.

To depict the results of the simulation study, we plot the values of empirical type I error
and power in Figures 4–6. It is evident from Figure 4 that, the empirical type I error is
approaching the chosen significance level as n increases. Figures 5 and 6 clearly depict the
supremacy of the proposed in test in terms of power, compared to the competitors.

5. Data analysis

We illustrate the applicability of the proposed test procedures using several real datasets in
this Section.

Uncensored Case, Illustration 1

We consider the data on active repair times in hours for an airborne communication
transceiver reported in Chhikara and Folks [3]. The data consists of 46 observations. Jay-
alath and Chhikara [13] used this data set to illustrate the Gibbs sampling approach for
IG distribution in the presence of right censoring. We now standardize the data to apply
the testing procedures discussed in Section 3, to test whether this dataset follows an IG
distribution. We obtain the test statistic as �̂ = 0.1870. Accordingly, we accept the null
hypothesis that the data follows an inverse Gaussian distribution at both 1% (critical val-
ues are −0.0.5583 and 0.5583) and 5% (critical values are −0.4248 and 0.4248) level of
significance.
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Table 5. Comparison of empirical power for different alternatives : 20% censoring.

n α �̂ HK EV1 EV2 KS CvM AD

Inv Gauss (1,1) 50 0.01 0.0147 0.0088 0.0192 0.0199 0.0165 0.0178 0.0148
75 0.0136 0.0092 0.0163 0.0181 0.0145 0.0151 0.0129
100 0.0119 0.0121 0.0152 0.0168 0.0132 0.0142 0.0121
200 0.0113 0.0118 0.0139 0.0150 0.0121 0.0129 0.0115
400 0.0106 0.0110 0.0117 0.0141 0.0113 0.0115 0.0109

Inv Gauss (1,1) 50 0.05 0.0527 0.0537 0.0467 0.0460 0.0671 0.0652 0.0617
75 0.0518 0.0530 0.0472 0.0592 0.0591 0.0598 0.0581
100 0.0488 0.0525 0.0479 0.0577 0.0582 0.0562 0.0562
200 0.0493 0.0519 0.0481 0.0565 0.0558 0.0551 0.0545
400 0.0495 0.0511 0.0488 0.0534 0.0535 0.0540 0.0532

Gamma (2,1) 50 0.01 0.7823 0.7286 0.2248 0.2072 0.6993 0.5428 0.6533
75 0.8482 0.7649 0.4586 0.4483 0.7683 0.6887 0.7271
100 0.8921 0.7892 0.6221 0.6327 0.7982 0.8041 0.7816
200 0.9282 0.8298 0.7518 0.7485 0.8999 0.8133 0.8532
400 0.9521 0.8808 0.8345 0.8349 0.9213 0.8993 0.8656

Gamma (2,1) 50 0.05 0.7965 0.7512 0.5123 0.5336 0.7665 0.7311 0.7715
75 0.8625 0.7891 0.6610 0.5639 0.8209 0.7872 0.7996
100 0.8911 0.8267 0.7221 0.6527 0.8494 0.8221 0.8137
200 0.9828 0.8701 0.8293 0.7985 0.8794 0.8307 0.9159
400 0.9953 0.9169 0.8545 0.8349 0.9599 0.9201 0.8872

Log-normal (1,1) 50 0.01 0.8612 0.8183 0.1095 0.0676 0.7404 0.7915 0.8167
75 0.9448 0.8891 0.1869 0.1896 0.8076 0.8461 0.8721
100 0.9742 0.9439 0.2877 0.3889 0.8585 0.8962 0.9168
200 0.9996 0.9772 0.3964 0.4520 0.9390 0.9546 0.9821
400 1.0000 0.9998 0.5191 0.4961 0.9998 1.0000 1.0000

Log-normal (1,1) 50 0.05 0.9531 0.9494 0.1344 0.1024 0.9303 0.9422 0.9524
75 0.9979 0.9958 0.2571 0.2398 0.9995 0.9999 0.9999
100 0.9999 0.9999 0.4083 0.4087 1.0000 1.0000 1.0000
200 1.0000 1.0000 0.4854 0.4990 1.0000 1.0000 1.0000
400 1.0000 1.0000 0.5912 0.5632 1.0000 1.0000 1.0000

Weibull (3,3) 50 0.01 0.8145 0.5057 0.4465 0.4309 0.3447 0.3606 0.3857
75 0.8498 0.6256 0.5394 0.4719 0.4652 0.5398 0.5058
100 0.9125 0.7915 0.6580 0.6486 0.6198 0.6873 0.6525
200 0.9659 0.9270 0.7764 0.7687 0.7289 0.7428 0.7615
400 0.9971 0.9652 0.8599 0.8500 0.8599 0.8828 0.8722

Weibull (3,3) 50 0.05 0.9113 0.5801 0.5243 0.5266 0.4617 0.5286 0.5891
75 0.9494 0.6281 0.6229 0.6012 0.6399 0.6872 0.6888
100 0.9869 0.8152 0.7331 0.7410 0.6791 0.7911 0.8091
200 0.9999 0.9448 0.8179 0.8068 0.7942 0.8522 0.8763
400 1.0000 0.9883 0.8989 0.8901 0.9021 0.9265 0.9348

Rayleigh (1.5) 50 0.01 0.9492 0.9029 0.3440 0.3766 0.7672 0.5886 0.6384
75 0.9795 0.9252 0.4608 0.4913 0.8382 0.6676 0.7590
100 0.9997 0.9367 0.5731 0.5701 0.8890 0.7987 0.8677
200 1.0000 0.9981 0.7172 0.7111 0.9387 0.8251 0.8801
400 1.0000 1.0000 0.7952 0.8058 0.9843 0.9082 0.9356

Rayleigh (1.5) 50 0.05 0.9791 0.9283 0.4243 0.4566 0.9675 0.5886 0.6377
75 0.9994 0.9288 0.5123 0.5405 0.9892 0.9671 0.8281
100 0.9999 0.9557 0.6431 0.6507 0.9999 0.9988 0.8991
200 1.0000 0.9992 0.7672 0.7861 1.0000 1.0000 0.9212
400 1.0000 1.0000 0.8482 0.8358 1.0000 1.0000 0.9671

Uncensored Case, Illustration 2:

Here the data of age at death of 141 Roman era Egyptian mummies is considered. The
data can be found in egypt data in library univariateML of statistical package R. After
standardizing the data, we obtain the test statistic as �̂ = 0.3245. Accordingly, we reject
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Table 6. Comparison of empirical power for different alternatives : 40% censoring.

n α �̂ HK EV1 EV2 KS CvM AD

Inv Gauss (1,1) 50 0.01 0.0188 0.0201 0.0222 0.0009 0.0212 0.0209 0.0198
75 0.0167 0.0191 0.0195 0.0039 0.0201 0.0192 0.0184
100 0.0142 0.0165 0.0176 0.0042 0.0187 0.0179 0.0153
200 0.0139 0.0150 0.0154 0.0065 0.0166 0.0166 0.0142
400 0.0125 0.0142 0.0143 0.0076 0.0146 0.0140 0.0134

Inv Gauss (1,1) 50 0.05 0.0617 0.0688 0.0410 0.0674 0.0647 0.0652 0.0617
75 0.0591 0.0612 0.0422 0.4612 0.0622 0.0631 0.0602
100 0.0573 0.0583 0.0562 0.0597 0.0593 0.0601 0.0581
200 0.0555 0.0564 0.0554 0.0565 0.0569 0.0577 0.0564
400 0.0532 0.0541 0.0545 0.0551 0.0554 0.0569 0.0548

Gamma (2,1) 50 0.01 0.7203 0.6586 0.1928 0.1837 0.5826 0.5028 0.5228
75 0.7965 0.7049 0.3512 0.3398 0.6683 0.5871 0.6841
100 0.8341 0.7477 0.5644 0.4561 0.7188 0.6864 0.7054
200 0.8867 0.7961 0.6987 0.6890 0.7699 0.7865 0.7751
400 0.9054 0.8114 0.7854 0.7981 0.8298 0.8235 0.8310

Gamma (2,1) 50 0.05 0.6563 0.6989 0.4314 0.5089 0.6465 0.5721 0.6321
75 0.7825 0.7437 0.4507 0.6193 0.7263 0.7174 0.7399
100 0.8390 0.7983 0.6271 0.7110 0.7591 0.7622 0.7637
200 0.8998 0.8341 0.7516 0.7182 0.8441 0.8206 0.8454
400 0.9355 0.8862 0.8323 0.7901 0.8992 0.8733 0.8471

Log-normal (1,1) 50 0.01 0.6028 0.5672 0.0795 0.0467 0.6501 0.6551 0.6868
75 0.7843 0.7802 0.1386 0.1518 0.7274 0.7235 0.7734
100 0.8814 0.8486 0.2577 0.2881 0.7901 0.7847 0.8104
200 0.9190 0.8910 0.3564 0.3922 0.8790 0.8671 0.9028
400 0.9518 0.9522 0.4291 0.4264 0.9209 0.9152 0.9306

Log-normal (1,1) 50 0.05 0.7513 0.6954 0.1147 0.0935 0.7801 0.7620 0.7823
75 0.8461 0.8231 0.1957 0.2096 0.8322 0.8451 0.8652
100 0.9312 0.8992 0.2982 0.3105 0.9182 0.8851 0.9021
200 0.9629 0.9337 0.3877 0.3869 0.9462 0.9342 0.9487
400 0.9987 0.9765 0.5183 0.5333 0.9712 0.9763 0.9877

Weibull (3,3) 50 0.01 0.7245 0.4391 0.3826 0.3708 0.3289 0.3060 0.3289
75 0.7991 0.5473 0.4994 0.4114 0.4015 0.4622 0.4461
100 0.8622 0.6311 0.6078 0.5889 0.4980 0.5672 0.5921
200 0.9320 0.8192 0.7216 0.6467 0.6500 0.6892 0.6981
400 0.9561 0.8892 0.8014 0.7901 0.8109 0.8321 0.7905

Weibull (3,3) 50 0.05 0.8213 0.4981 0.4788 0.4562 0.3981 0.4590 0.4781
75 0.8618 0.5790 0.5671 0.5712 0.5899 0.6172 0.6380
100 0.9347 0.7234 0.6891 0.6902 0.6399 0.7241 0.7691
200 0.9785 0.8214 0.7966 0.7709 0.7645 0.8129 0.8435
400 0.9941 0.9023 0.8691 0.8501 0.8792 0.8763 0.9021

Rayleigh (1.5) 50 0.01 0.8346 0.7928 0.2549 0.2671 0.6355 0.4238 0.5567
75 0.9049 0.8562 0.3890 0.3875 0.8382 0.6092 0.6792
100 0.9562 0.9021 0.4904 0.4860 0.8692 0.7333 0.7826
200 0.9766 0.9673 0.5891 0.6233 0.9077 0.7905 0.8409
400 0.9912 0.9873 0.7561 0.7348 0.9561 0.8762 0.9045

Rayleigh (1.5) 50 0.05 0.8993 0.8567 0.3879 0.3907 0.7874 0.7423 0.7278
75 0.9456 0.8934 0.4677 0.4992 0.9092 0.9230 0.7972
100 0.9879 0.9310 0.5875 0.5881 0.9578 0.9651 0.8588
200 0.9993 0.9762 0.6981 0.6861 0.9802 0.9908 0.8921
400 1.0000 0.9995 0.7652 0.7881 0.9982 1.0000 0.9499

the null hypothesis that the data follows an inverse Gaussian distribution at both 1% (crit-
ical values are −0.2869 and 0.2869) and 5% (critical values are −0.2183 and 0.2183) level
of significance.
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Figure 4. Plot of empirical type I error at α = 0.01 and α = 0.05 for IG (1, 1).

Figure 5. Plot of empirical power for 20% censoring.

Censored Case, Illustration 1:

We consider the same data used for the uncensored case and following Jayalath and
Chhikara [13], we randomly select 6 observations out 46, to be randomly right censored
and the right censoring times are generated using a random number generator. This gen-
erates, randomly right-censored data where 13% of observations are censored. We now
standardize the data to apply the testing procedures discussed in Section 3, to test whether
this dataset follows an IG distribution. When we use the same censoring points as in Jay-
alath and Chhikara [13] We obtain the test statistic as �̂c = −1.7341. Accordingly, we
accept the null hypothesis that the data follows an inverse Gaussian distribution at both
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Figure 6. Plot of empirical power for 40% censoring.

1% and 5% levels of significance. We can also note that, when we use random censoring
points also, we accept H0.

Censored Case, Illustration 2:

We examine the data on survival times for patients with bile duct cancer who took part in
a study to determine whether a combination of radiation treatment (RoRx) and the drug
5-fluorouracil (5-FU) prolonged survival [28]. Survival times in days for 47 patients are
given, which include 3 censoring times. The complete data is given Lawless [29] (Page 372,
Example 7.4). We analyse the data using the proposed procedures and the test statistic is
obtained as −3.6553. The obtained test statistic value suggests that we can reject the null
hypothesis that the data follows inverse Gaussian distribution at both 5% and 1% levels of
significance.

6. Conclusion

In this article, we developed new goodness of fit tests for the inverse Gaussian distribu-
tion in the presence and absence of censoring. We used the fixed point characterization
for inverse Gaussian distribution by Betsch and Ebner [20] to develop the tests. First,
we proposed a test static based on U-Statistic theory for IG distribution, when the data
is complete, and studied the asymptotic properties of the test statistic in detail. Several
tests are available for IG distribution when the data is complete. For right-censored data,
Ducharme [8] proposed a goodness of fit test for IG distribution, for which the computa-
tional procedures are complex. Inspired by this, we developed a new goodness of fit test for
IG distribution for right-censored data which is easy to implement. We showed that the
asymptotic distribution of the proposed test statistic is normal. A consistent estimator of
the asymptotic variance is also obtained. Further, we also developed a JEL ratio test to test
IG distribution with unit parameters.
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An extensive Monte Carlo simulation study is conducted to evaluate the finite sam-
ple performance of the proposed tests. In the complete data scenario, we compared the
performance of our test with the other tests available in the literature for IG distribution.
For right-censored data, we generated pseudo-complete sample from the original right-
censored data, using the method proposed by Balakrishnan et al. [14] and then applied
the classical goodness of fit tests and other tests proposed for inverse Gaussian distribu-
tion. The proposed test procedures have a well-controlled type I error rate and good power
against different alternatives. The practical applicability of the proposed procedures is well
exemplified by applying it to four real datasets.

The test considered in this article deals with the right censoring scenario. In lifetime data
analysis, the data may also suffer from several other forms of censoring and truncation.
The proposed procedures can be modified to accommodate left truncated data. Further,
we can develop the goodness of fit tests using similar fixed point characterization for other
important lifetime distributions, in both continuous and discrete cases.
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