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Robust quadratic discriminant analysis using Sn covariance

O. K. Sajana and T. A. Sajesh

Department of Statistics, St Thomas’ College (Autonomous), Thrissur, Kerala, India

ABSTRACT
This paper presents a robust method for robust estimation of quadratic
discriminant analysis. The mean and covariance matrix for estimating quad-
ratic discriminant rule is computed using a robust estimation method
called Sn method established from a robust covariance estimator SnCov:
The performance of the proposed method is evaluated using the results of
simulated samples. This outlier detection method is compared with some
well-known methods available in the current literature. The application of
the proposed method in real-life data is also executed in this paper.
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1. Introduction

Discriminant Analysis (DA) is the multivariate technique that allows separating random objects
into known groups of the population. The theory of discriminant function was introduced by
Fisher (1938) for implementing the treatment of multiple measurements. The discriminant ana-
lysis can be considered as a statistical decision-making problem (Anderson 2004). The objective
of discriminant analysis is the formulation of classification rules based on several training dataset
and these determined rules are applied to classify the actual dataset. Discriminant analysis
method includes Linear Discriminant analysis (LDA) and Quadratic Discriminant Analysis
(QDA) for the assumptions according to equal and unequal population covariance matrices.

The classical methods of discriminant rules are often adopted to allocate multivariate observa-
tions to population groups and these are functions of sample mean vector and covariance matrix
of the training dataset. Unfortunately, traditional rules are influential to outlying observations in
the dataset which can mislead the classification of actual data. To overcome this situation, a
robust alternative that is less sensitive to the presence of outlying observations are required for
the estimation of parameters of discriminant rules.

Several multivariate robust estimation methods have been applied in literature for constructing
robust quadratic discriminant rules. A robust estimation method called Minimum Covariance
Determinant(MCD) proposed by Rousseeuw (1985) and Rousseeuw and Van Driessen (1999),
that had been applied in robust quadratic and linear discriminant analysis for formulating dis-
criminant rules by Hubert and Van Driessen (2004). They showed that the reweighting technique
applied in MCD decreases the misclassification probabilities. Kurtosis method proposed by Pe~na
and Prieto (2001) was implemented by Lakshmi and Sajesh (2018) in robust estimation of QDA
parameters. Sajesh and Srinivasan (2019) developed robust QDA using comedian method and
presented that the method is better than that of robust QDA using MCD and classical QDA.
Various methods such as M-estimation (Maronna 1976), S-estimation (Lopuha€a 1989; Rocke
1996) and Orthogonalized Gnanadesikan-Kettenring (OGK) method (Maronna and Zamar 2002)
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can also existed for robust estimation of location vector and scatter matrix. These methods can
be adopted for the robust estimation of QDA parameters.

This article focuses on the study of Robust Quadratic Discriminant Analysis (RQDA) using
the robust location and scatter based on Sn method discussed by Sajana and Sajesh (2020a). The
effect of robust quadratic discriminant rules is investigated by comparing the overall misclassifica-
tion estimate (MP) proposed by Hubert and Van Driessen (2004). The proposed robust QDA is
compared with classical estimators and the RQDA’s proposed by Hubert and Van Driessen
(2004), Sajesh and Srinivasan (2019), Maronna (1976) and Maronna and Zamar (2002), to test
the efficiency of the method. Moreover, real data applications are illustrated to ensure the per-
formance of proposed RQDA in real life situations.

The generalization of classical QDA is discussed in the second section. The theoretical defini-
tions are discussed in order to introduce the robust estimates of parameters of QDA. The third
section consists of the definition of RQDA and misclassification probabilities. The results are
tested for simulated training datasets as well as validation datasets and the estimated overall mis-
classification is described in section four. The next section contains the application of the pro-
posed RQDA in real-life data. The results and findings are summarized in the last section.

2. Classical quadratic discriminant analysis

The theoretical generalization of classification procedure for discrimination with several groups of
population p1, :::,pk can be explained by considering the density fiðxÞ associated with population
pi to be multivariate normal with mean vectors li and covariance matrices Ri (Johnson and
Wichern 1992). The derived discriminant rule for allocating the multivariate observation x 2 Rp

to lth population group is defined asallocate x to pl if

ln plflðxÞ ¼ ln pl � p
2
ln ð2pÞ � 1

2
ln jRlj � 1

2
ðx � llÞTR�1

l ðx� llÞ
¼ max

i¼1, :::, k
ln pifiðxÞ (1)

where pi be the membership probability of population group pi. The above discriminant rule can
be simplified by ignoring the constant term, then the quadratic discriminant score will be

dQi ðxÞ ¼ � 1
2
ln jRij � 1

2
ðx� liÞTR�1

i ðx � liÞ þ ln pi for i ¼ 1, 2, :::, k (2)

It is applied to find the discriminant rule with least total misclassification probability for
normal population (Johnson and Wichern 1992). The discriminant rule is derived asallocate x to
pl if

dQl ðxÞ ¼ maxfdQ1 ðxÞ, dQ2 ðxÞ, :::, dQk ðxÞg (3)

The quadratic discriminant score is reduced for the homogeneous population covariance
matrices, it will be a linear combination of components of x: Therefore the linear discriminant
score is defined as

dLi ðxÞ ¼ lTi R
�1x � 1

2
lTi R

�1li þ ln pi for i ¼ 1, 2, :::, k (4)

Practically, the scores are embodied of unknown parameters, li,Ri and pi (membership proba-
bilities). Thus, sample mean vector �xi and sample covariance matrix Si of training datasets are
adopted to compute the discriminant score explained in Equation (2). The estimated Classical
Quadratic Discriminant Rule (CQDR) or QDAC is then written asallocate x to pl if

d̂
CQ

l ðxÞ ¼ maxfd̂Q

1 ðxÞ, d̂
Q

2 ðxÞ, :::, d̂
Q

k ðxÞg (5)
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where d̂
Q

i ðxÞ is defined as

d̂
Q

i ðxÞ ¼ � 1
2
ln jSij � 1

2
ðx � �xiÞTS�1

i ðx� �xiÞ þ ln p̂Ci for i ¼ 1, 2, :::, k (6)

The unknown membership probability can be estimated as a constant, i.e., p̂Ci ¼ 1=k or can be
estimated using relative frequencies of each population group, i.e., p̂Ci ¼ ni=n where n ¼ Pk

i ni:
Since the classical discriminant function directly depends on the classical estimators of mean vec-
tor and covariance matrix of training data which are highly influenced by the presence of outliers,
classification based on the classical discriminant function will be misleading. In order to solve the
disparity in discrimination of observation due the presence of outliers, it is preferable to adopt
robust estimators of mean vector and covariance matrix in the classification rule. The robust
quadratic discriminant rule based on Sn estimators is described in the following section.

3. Robust quadratic discriminant analysis (RQDA)

Robust alternative for bivariate covariance (SnCov) was proposed by Sajana and Sajesh (2020b)
can be adopted to create initial estimates of robust covariance matrix for the iterative method of
multivariate outlier detection and then estimation of location vector and scatter matrix.

The bivariate covariance estimate SnCov of random variables X and Y is defined as,

SnCovðX,YÞ ¼ med
i
fmed

j 6¼i
xi � xjð Þ yi � yjð Þ½ �g (7)

where 1 � i, j � n and med stands for high median (½n2�th order statistic) for inner median, low
median (½nþ1

2 �th order statistic) for outer median and n denotes number of samples. Sajana and
Sajesh (2020), introduced a method for robust estimation of location vector and covariance
matrix. For the purpose of robust estimation, robust covariance and correlation matrices by utiliz-
ing SnCov is defined as,

COVSnðXÞ ¼ ðSnCovðXi,XjÞÞ, i, j ¼ 1, 2, :::, p (8)

Corresponding correlation matrix is defined as,

nSnðXÞ ¼ DCOVSnðXÞDT (9)

where D is diagonal matrix with diagonals 1=SnðxiÞ, i ¼ 1, :::, p and SnðXÞ ¼ medi medj xi � xj
�� ��,

for i, j ¼ 1, :::, n, where med stands for low median (½nþ1
2 �th order statistic) for outer median and

high median (ð½n2� þ 1Þth order statistic) for inner median. Since SnCov lacks positive semi defin-
iteness, an iterative technique introduced by Maronna and Zamar (2002) has been applied to
make SnCov positive definite and affine-equivariant. This iterative robust estimation procedure is
termed as Sn method: These robust mean vector and covariance matrix estimates can be used to
propose a RQDA.

The robust quadratic discriminant rule for RQDA is then defined as,allocate x to pl if d̂
RQ

l ðxÞ
� d̂

RQ

i ðxÞ for all i ¼ 1, 2, :::, k

d̂
RQ

i ðxÞ ¼ � 1
2
ln jR̂i, Sn j �

1
2
ðx � l̂i, SnÞTR̂

�1
i, Snðx� l̂i, SnÞ þ ln p̂Ri for i ¼ 1, 2, :::, k (10)

where l̂i, Sn and R̂i, Sn are the estimates of mean vector and covariance matrix using Sn method.
The membership probability can be defined robustly by p̂Ri ¼ ~ni=~n, where ~n ¼ Pn

i¼1 ~ni and ~ni is
the number of inliers in the ith group. The performances of the RQDA based on Snmethod
(RQDASn) proposed by Sajana and Sajesh (2020a) is then evaluated using estimated MP proposed
by Hubert and Van Driessen (2004). The MP is defined as the weighted mean of the misclassifi-
cation probabilities where weights are estimated membership probabilities:
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MP ¼
Xk
i¼1

p̂Ri MPi (11)

where MPi be the misclassification probabilities. In this paper the evaluation of robust discrimin-
ant rules are conducted using R-programming language (R Core Team 2020). To ensure the per-
formance of the proposed RQDASn is compared with the classical discriminant analysis and RDA
based on MCD estimator, Comedian estimator, M-estimator and OGK estimator, using simu-
lated samples.

4. Simulation results

The technique of MP includes splitting the observations randomly into two sets, one is the train-
ing set which is utilized for constructing discriminant rule and other set is the validation set
which is used to estimate misclassification error. The estimated MP values for different case of
contamination is discussed below.

The case Ap considers the uncontaminated data with dimension p where 500 observations
from each population are drawn as training, which is denoted by

Ap:p1 : 500Npðl1, p,R1, pÞ
p2 : 500Npðl2, p,R2, pÞ
p3 : 500Npðl3, p,R3, pÞ

Training datasets which also contain outliers are samples from another distribution. These
cases are given below.

Bp:p1 : 400Npðl1, p,R1, pÞ þ 100Npð6l1p,R4, pÞ
p2 : 400Npðl2p,R2pÞ þ 100Npð6l1, p,R4, pÞ
p3 : 400Npðl3, p,R3, pÞ þ 100Npð6l2, p,R4, pÞ

Cp:p1 : 800Npðl1, p,R1, pÞ þ 200Npð6l3, p,R4, pÞ
p2 : 600Npðl2p,R2, pÞ þ 150Npð6l1p,R4, pÞ
p3 : 400Npðl3, p,R3, pÞ þ p3 : 100Npð6l2, p,R4, pÞ
Dp:p1 : 800Npðl1, p,R1, pÞ þ 200Npð6l3, p,R4,pÞ
p2 : 400Npðl2, p,R2, pÞ þ 100Npð6l1, p,R4, pÞ
p3 : 400Npðl3p,R3, pÞ þ 100Npð6l2, p,R4, pÞ
Ep:p1 : 400Npðl1, p,R1, pÞ þ 100Npð6l3, p,R4, pÞ
p2 : 450Npðl2p,R2, pÞ þ 50Npð6l1, p,R4, pÞ
p3 : 350Npðl3, p,R3, pÞ þ 150Npð6l2, p,R4, pÞ
Fp:p1 : 160Npðl1, p,R1, pÞ þ 40Npð6l3, p, 25R4, pÞ
p2 : 160Npðl2, p,R2, pÞ þ 40Npð6l1, p, 25R4, pÞ
p3 : 160Npðl3, p,R3, pÞ þ 40Npð6l2, p, 25R4, pÞ

where li, p is the zero vector with ith element equal to 1. The different choices of covariance
matrix R:
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R1, 3 ¼ diagð0:4, 0:4, 0:4Þ2
R1, 5 ¼ diagð0:4, 0:4, 0:4, 0:4, 0:4Þ2
R1, 10 ¼ diagð0:4, 0:4, 0:4, 0:4, 0:4, 0:4, 0:4, 0:4, 0:4, 0:4Þ2
R1, 20 ¼ diagð0:4, :::, 0:4Þ2

R2, 3 ¼ diagð0:25, 0:75, 0:25Þ2
R2, 5 ¼ diagð0:25, 0:75, 0:25, 0:75, 0:25Þ2
R2, 10 ¼ diagð0:25, 0:75, 0:25, 0:75, 0:25, 0:75, 0:25, 0:75, 0:25, 0:75Þ2
R2, 20 ¼ diagð0:25, 0:75, 0:25, :::, 0:75Þ2

R3, 3 ¼ diagð0:9, 0:6, 0:3Þ2
R3, 5 ¼ diagð0:9, 0:6, 0:3, 0:9, 0:6Þ2
R3, 10 ¼ diagð0:9, 0:6, 0:3, 0:9, 0:6, 0:3, 0:9, 0:6, 0:3, 0:9Þ2
R3, 20 ¼ diagð0:9, 0:6, 0:3, :::, 0:6Þ2

where diag stands for diagonal elements. Different situations of data contaminations are con-
structed using 20% outliers in Bp, Cp, Dp, Ep and Fp. From these various cases of training datasets,
the case Bp contains equal number of observations and outliers. In the case of populations C and
D, an unequal group size is considered. A varying outlier percentages are tested in trial dataset E
and F. Each case is repeated for 100 Monte Carlo simulations and based on the inliers identified
by the Sn method is then used to calculate relative frequencies of membership probabilities.

Tables 1 and 2 respectively shows average of total misclassification probabilities of 100 Monte
Carlo experiments of each training groups and over all misclassification for p¼ 10 and p¼ 20.

Table 1. Misclassification probability of RQDASn, RQDAComedian RQDAMCD, QDAC , RQDAM and RQDAOGK for p¼ 10.

RQDASn RQDAComedian

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.046 0.033 0.98 0.354 0.047 0.034 0.99 0.355
Bp 0.038 0.097 0.155 0.102 0.039 0.110 0.177 0.114
Cp 0.021 0.073 0.152 0.072 0.025 0.095 0.201 0.093
Dp 0.014 0.641 0.150 0.099 0.014 0.744 0.177 0.115
Ep 0.037 0.137 0.266 0.155 0.036 0.121 0.245 0.139
Fp 0.050 0.036 0.040 0.042 0.051 0.041 0.044 0.046

RQDAMCD QDAC

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.046 0.034 0.9845 0.355 0.044 0.031 0.039 0.38
Bp 0.207 0.097 0.082 0.129 0.142 0.074 0.088 0.101
Cp 0.157 0.089 0.111 0.124 0.134 0.344 0.377 0.285
Dp 0.063 0.452 0.092 0.092 0.126 0.797 0.141 0.355
Ep 0.201 0.160 0.300 0.207 0.151 0.056 0.213 0.141
Fp 0.038 0.046 0.058 0.047 0.001 0.324 0.824 0.384

RQDAM RQDAOGK
MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.047 0.041 0.044 0.043 0.047 0.042 0.046 0.045
Bp 0.034 0.073 0.140 0.085 0.119 0.115 0.154 0.131
Cp 0.025 0.064 0.165 0.072 0.096 0.101 0.181 0.118
Dp 0.012 0.043 0.138 0.079 0.043 0.388 0.168 0.105
Ep 0.032 0.093 0.237 0.123 0.105 0.159 0.338 0.209
Fp 0.051 0.046 0.062 0.053 0.016 0.069 0.159 0.081

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 5



The results tabulated on both tables shows that the group wise misclassification probability and
the over all misclassification of RQDASn is less in all cases compared to RQDAMCD, QDAC,
RQDAM and RQDAOGK : In comparison with RQDAComedian, RQDASn have less misclassification
measurements in most of the cases. In Table 2 the misclassification decreasing rate increases for
increase in the dimension as compared to RQDAComedian: In the case of comparison of the pro-
posed method with RQDAM , RQDASn shows better and rarely equal efficiency.

Apart from unequal mean vector and covariance matrix which is used in the previous simula-
tion, unequal mean vector and equal covariance matrix and vice versa presented by Croux and
Dehon (2008) are considered in the following simulation setup. For unequal mean vector and
equal covariance matrix structure, two populations each consisting of 500 observations from
Npð�1, IÞ and Npð1, IÞ are generated for validation set and additional 10% outliers from Npð9, IÞ
and Npð�9, IÞ are generated for constructing training set. Similarly for equal mean vector and
unequal covariance matrix structure, two populations each consisting of 500 observations from
Npð0, 100IÞ and Npð0, IÞ are generated for validation set and additional 10% outliers from Npð0, IÞ
and Npð0, 100IÞ are generated for constructing training set, where mean vector 1 stands for col-
umn vector with all elements equal to one and I denotes for identity matrix. The estimated mis-
classification probabilities of the two different group structures is displayed in Tables 3 and 4.
The table values shows that the proposed RQDA performed better than the other compared
methods with very low misclassification probabilities.

Moreover, Krzy�sko and Smaga (2020), discussed different types of contaminations such as t3-
distribution contamination, scale contamination, one-direction shift location contamination and
radial location contamination. The multivariate observations xij for population groups k¼ 3, are
generated in the following way:

xij ¼ Uaij þ eij (12)

where i ¼ 1, 2, 3, j ¼ 1, :::, ni,U is the matrix of basis functions and aij are 5p-dimensional random

Table 2. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, QDAC , RQDAOGK and RQDAOGK for p¼ 20.

RQDASn RQDAComedian

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.021 0.012 0.051 0.016 0.024 0.116 0.99 0.344
Bp 0.082 0.0303 0.109 0.078 0.088 0.020 0.091 0.070
Cp 0.044 0.052 0.147 0.075 0.051 0.041 0.131 0.069
Dp 0.009 0.442 0.089 0.064 0.016 0.381 0.097 0.066
Ep 0.011 0.011 0.043 0.025 0.071 0.025 0.152 0.084
Fp 0.039 0.011 0.018 0.023 0.042 0.018 0.018 0.026

RQDAMCD QDAC

MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.024 0.013 0.996 0.344 0.022 0.009 0.014 0.015
Bp 0.276 0.052 0.027 0.121 0.094 0.016 0.025 0.045
Cp 0.196 0.092 0.039 0.131 0.083 0.321 0.348 0.251
Dp 0.084 0.782 0.032 0.110 0.064 0.842 0.085 0.330
Ep 0.302 0.187 0.313 0.250 0.101 0.012 0.152 0.088
Fp 0.036 0.031 0.032 0.033 0.012 0.481 0.754 0.411

RQDAM RQDAOGK
MP1 MP2 MP3 MP MP1 MP2 MP3 MP

Ap 0.026 0.018 0.019 0.021 0.027 0.019 0.022 0.023
Bp 0.082 0.014 0.073 0.059 0.155 0.064 0.122 0.117
Cp 0.061 0.023 0.087 0.056 0.112 0.064 0.147 0.107
Dp 0.021 0.594 0.074 0.065 0.058 0.456 0.118 0.102
Ep 0.066 0.014 0.145 0.075 0.138 0.038 0.164 0.114
Fp 0.039 0.026 0.028 0.031 0.007 0.067 0.119 0.064
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vectors. Vector of measurement errors, eij ¼ ðeij1, :::, eijpÞ, where eijp � Nð0, 0:25rijzÞ and rijz is the
range of the zth row of the matrix Uaij, for z ¼ 1, :::, p:

The matrix of values of basis functions U is defined as U ¼ diagð/T
1 , :::,/

T
p Þ is a block diag-

onal matrix of /T
k ¼ ð/k1, :::,/kBk

Þ, k ¼ 1, :::, p: The values of basis functions, /T
k are generated

using the function fourierðÞ from package fda in the R-program (Ramsay et al. 2017) by specify-
ing the two arguments, one is the vector of p arguments(sequence of values in [0,1]) and another
argument is the number of basis functions in the Fourier basis (Bk ¼ 5). The results will provide
p� Bk matrix with p Fourier basis and U is constructed by choosing rows as /T

k for k ¼ 1, :::, p:
The random vectors aij are generated according to aij � N5pðbi, I5pÞ, where b1 ¼ 05p, b2 ¼

ð3, 0, :::, 0ÞT , b3 ¼ ð0, 3, :::, 0ÞT (Todorov and Pires 2007). In order to study the performance of the
proposed RQDASn , different kinds of contaminations are included in the above mentioned data
set. The outlying points are simulated according to the following way:

� Multivariate t3-distribution contamination: aij ¼ Tij=
ffiffiffiffiffiffiffiffiffiffi
Cij=3

p
, where Tij � N5pðbi, I5pÞ

and Cij � v23
� Scale contamination: aij � N5pðb;i, 50I5pÞ
� One-direction shift location contamination: aij�N5pðbiþ10Q5p15p, ð0:252ÞI5pÞ,Q5p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v25p,0:999=ð5pÞ

q

� Radial location contamination: aij � N5pðbi þ 10Q5pmij=||mij||, ð0:252ÞI5pÞ and mij is one of the 25p

random diagonals (±1,… , ±1)

The data for ith population group is generated by substituting the simulated values of U, aij
and eij for j ¼ 1, :::, ni in (12). The three different parameters of aij are considered for generating
data points for different population groups. For simulating specific percentages (25% and 40%) of
outlying points in the data set, xij is generated in a similar manner with changes in the values of
aij and eij according to the type of outliers and replace the inlier(true data points) data with these
outlying points.

The misclassification probabilities using simulated data when each group consisting of equal
number of observations (n1 ¼ n2 ¼ n3 ¼ 100) that containing different type of outliers mentioned
above are presented in Tables 5–8, respectively. This simulation process is repeated 100 times to
produce the results more accurately and its averages are presented in the tables. Table 1 shows
group MP values of the RQDA rules using different robust methods, in this table the RQDASn

Table 3. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, RQDAM and RQDAOGK for unequal mean vector and
equal covariance matrix structure.

p¼ 10 p¼ 20

MP1 MP2 MP MP1 MP2 MP

RQDASn 0 0 0 0 0 0
RQDAComedian 0.002 0.003 0.002 0.001 0.001 0.001
RQDAMCD 0.002 0.003 0.003 0.002 0.003 0.002
RQDAM 0.003 0.005 0.004 0.0034 0.004 0.004
QDAOGK 0.006 0.006 0.006 0.003 0.005 0.004

Table 4. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, RQDAM and RQDAOGK for equal mean vector and
unequal covariance matrix structure.

p¼ 10 p¼ 20

MP1 MP2 MP MP1 MP2 MP

RQDASn 0.001 0.001 0.001 0 0.001 0
RQDAComedian 0.041 0 0.021 0.039 0 0.021
RQDAMCD 0.025 0 0.013 0.008 0.001 0.004
RQDAM 0.031 0 0.016 0.029 0 0.015
QDAOGK 0.023 0 0.012 0.023 0 0.012
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has less misclassification probabilities compared to RQDAMCD, RQDAM and RQDAOGK. It has
less probability compared to RQDAComedian for higher level of contamination. In the case of
Table 6 (scale contamination), the proposed estimates produced MP values less than that of com-
pared methods and more stable than RQDAComedian for different ranges of contamination. In the
case of one-direction shift contamination and radial location contamination, RQDASn performed
equivalent to RQDAComedian and outperformed RQDAMCD, RQDAM and RQDAOGK.

5. Real life example

First example of Hemophilia data is considered to evaluate the performance of RQDASn in real
life data. The data openly available from https://www.rdocumentation.org/packages/rrcov/ver-
sions/1.5-2/topics/hemophilia. This data consists of measurements of two variables on 75 women
which contains, 45 hemophilia A carriers and 30 normal women, where the first variable

Table 5. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, RQDAM and RQDAOGK for t3-distribution contamin-
ation when p¼ 20.

25% of contamination 40% of contamination

MP1 MP2 MP3 MP1 MP2 MP3
RQDASn 0.292 0.233 0.293 0.293 0.251 0.285
RQDAComedian 0.284 0.224 0.280 0.344 0.289 0.3431
RQDAMCD 0.350 0.315 0.343 0.381 0.359 0.389
RQDAM 0.338 0.318 0.354 0.393 0.355 0.397
QDAOGK 0.300 0.257 0.311 0.381 0.358 0.389

Table 6. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, RQDAM and RQDAOGK for scale contamination
when p¼ 20.

25% of contamination 40% of contamination

MP1 MP2 MP3 MP1 MP2 MP3
RQDASn 0.244 0.201 0.244 0.294 0.255 0.298
RQDAComedian 0.177 0.169 0.644 0.204 0.199 0.855
RQDAMCD 0.291 0.266 0.292 0.292 0.251 0.297
RQDAM 0.279 0.248 0.267 0.304 0.256 0.312
QDAOGK 0.324 0.253 0.314 0.420 0.378 0.433

Table 7. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, RQDAM and RQDAOGK for one-direction shift location
contamination when p¼ 20.

25% of contamination 40% of contamination

MP1 MP2 MP3 MP1 MP2 MP3
RQDASn 0.246 0.216 0.244 0.290 0.260 0.298
RQDAComedian 0.244 0.204 0.246 0.331 0.354 0.333
RQDAMCD 0.446 0.421 0.441 0.518 0.493 0.525
RQDAM 0.441 0.423 0.447 0.507 0.496 0.523
QDAOGK 0.404 0.462 0.410 0.521 0.564 0.526

Table 8. Misclassification probability of RQDASn , RQDAComedian RQDAMCD, RQDAM and RQDAOGK for radial location contamin-
ation when p¼ 20.

25% of contamination 40% of contamination

MP1 MP2 MP3 MP1 MP2 MP3
RQDASn 0.282 0.221 0.271 0.331 0.299 0.335
RQDAComedian 0.254 0.225 0.268 0.327 0.294 0.333
RQDAMCD 0.452 0.417 0.435 0.514 0.500 0.516
RQDAM 0.432 0.414 0.447 0.515 0.492 0.528
QDAOGK 0.313 0.264 0.324 0.407 0.331 0.403
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measures log(AHF activity) and second variable measures log(AHF-like antigen). Johnson and
Wichern (1992) studied and analyzed the dataset.

To determine discriminant rules, 60% of randomly selected data points are considered as a
training dataset and the robust covariance matrix is calculated. The estimated membership proba-
bilities using inliers in the selected training set are pR1 ¼ 0:4 and pR2 ¼ 0:6: The remaining 40%
observations are considered as validation set to compute misclassification probabilities and MP.
The estimated group misclassification of group I, group II and over all misclassification (in per-
centages) using RQDASn , RQDAComedian, RQDAMCD, RQDAM and RQDAOGK respectively are (8,
11–13, 15–17, 20, 23) and (8, 14, 23). From the misclassification estimation, it is clear that the
proposed method has less error in classification and it is equivalent to that of CQDA since the
data is uncontaminated.

6. Summary

Discriminant analysis is related to the discriminant score and classification rule associated with it.
Since the classical discriminant scores are highly sensitive to the presence of outliers in the data-
set, a more efficient RQDA is proposed in this article. The RQDA is constructed based on the
robust estimation procedure developed on the basis of Sn method.

The evaluation of the performance of RQDASn is conducted using Monte Carlo simulation
study and it is compared with RQDAComedian, RQDAMCD, CQDA (QDAC), RQDAM and
RQDAOGK : The simulation study consists of different percentages of contamination in generated
population groups. The second set of simulation consists different choices location and scatter
combinations and the MP values of proposed RQDA are compared with some well known meth-
ods which are mentioned above. The empirical results of comparison show that the proposed
robust discriminant rule performed better than other compared methods. The proposed RQDA is
also applied in real dataset as well to understand the efficacy of the proposed method. All these
investigations supports the use of RQDASn for discriminant analysis in high dimensional datasets.
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