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Abstract: In physics, communication theory, engineering, statistics, and other areas, one of the
methods of deriving distributions is the optimization of an appropriate measure of entropy under
relevant constraints. In this paper, it is shown that by optimizing a measure of entropy introduced by
the second author, one can derive densities of univariate, multivariate, and matrix-variate distribu-
tions in the real, as well as complex, domain. Several such scalar, multivariate, and matrix-variate
distributions are derived. These include multivariate and matrix-variate Maxwell–Boltzmann and
Rayleigh densities in the real and complex domains, multivariate Student-t, Cauchy, matrix-variate
type-1 beta, type-2 beta, and gamma densities and their generalizations.
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1. Introduction

The following notations will be used in this paper: Real scalar variables, whether
mathematical variables or random variables, will be denoted by lower-case letters, such
as x, y, etc.; real vector/matrix variables—mathematical and random—will be denoted by
capital letters, such as X, Y, etc. Complex variables will be written with a tilde, such as
x̃, ỹ, X̃, Ỹ, etc. Scalar constants will be denoted by a, b, etc., and vector/matrix constants
by A,B, etc. No tilde will be used on constants. If A = (aij) is a p× p matrix, then its
determinant will be denoted by |A| or det(A) if the elements of aij are real or complex.
The transpose of A is written as A′ and the complex conjugate transpose as A∗. The
absolute value of the determinant will be written as |det(A)| =

√
det(AA∗). For example,

if det(A) = a + ib, i =
√
(−1), a, b is a real scalar, then the absolute value is |det(A)| =√

(a2 + b2). If X = (xij) is a p× q real matrix, then the wedge product of the differentials
dxij is written as dX = ∧p

i=1 ∧
q
j=1 dxij, where, for two real scalar variables x and y with

differentials dx and dy, the wedge product is defined as dx ∧ dy = −dy ∧ dx so that
dx ∧ dx = 0, dy ∧ dy = 0. If X̃ in the complex domain is a p× q matrix, then we can write
X̃ = X1 + iX2, i =

√
(−1), X1, X2, which is real; then, we define dX̃ = dX1 ∧ dX2. If f (X)

is a real-valued scalar function of X, where X may be scalar real variable x, scalar complex
variable x̃, vector/matrix real variable X, or vector/matrix complex variable X̃ such that
f (X) ≥ 0 for all X and

∫
X f (X)dX = 1, then f (X) will be called a statistical density.

In many disciplines, especially in physics, communication theory, engineering, and
statistics, one popular method of deriving statistical distributions is the optimization of an
appropriate measure of entropy under appropriate constraints. For a real scalar random
variable x, [1] introduced a measure of entropy or a measure of uncertainty:
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S( f ) = −c
∫

x
f (x) ln f (x)dx (1)

where c is a constant. The corresponding measure for the discrete case is

−c
k

∑
j=1

pj ln pj, pj > 0, j = 1, . . . , k, p1 + . . . + pk = 1

or (p1, . . . , pk), which is a discrete probability law. By optimizing S( f ), several authors
have derived exponential, Gaussian, and other distributions under the constraints in terms
of moments of x, such as E[x] = fixed over all functional f , meaning that the first moment
is given, where E(·) indicates the expected value of (·). This constraint will produce
exponential density. If E[x] and E[x2] are fixed, meaning that the first two moments are
fixed, then one has a Gaussian density, etc. The basic entropy measure in (1) has been
generalized by various authors. One such generalized entropy is the Havrda–Charvát
entropy [2] Hα( f ) for the real scalar variable x, which is given by

Hα( f ) =

∫
x[ f (x)]αdx− 1

21−α − 1
, α 6= 1 (2)

where f (x) is a density. The original Hα( f ) is for the discrete case, and the corresponding
continuous case is given in (2). Various properties, characterizations, and applications
of the Shannon entropy and various α-generalized entropies were discussed by [3]. A
modified version of (2) was introduced by Tsallis [4], and it is known in the literature as
Tsallis’ entropy, which is the following:

Tq( f ) =

∫
x[ f (x)]qdx− 1

1− q
, q 6= 1. (3)

Observe that when α → 1 in (2) and q → 1 in (3), both of these generalized entropies
in the real scalar case reduce to the Shannon entropy of (1). Tsallis developed the whole
area of non-extensive statistical mechanics by deriving Tsallis’ statistics by optimizing (3)
under the constraint that the first moment is fixed in an escort density, g(x) = [ f (x)]q∫

x [ f (x)]qdx .

Hundreds of papers have been published on Tsallis’ statistics.
In early 2000, the second author introduced a generalized entropy of the following form:

Mα( f ) =

∫
X [ f (X)]

1+ a−α
η dX− 1

α− a
, α 6= a (4)

where f (X) is a statistical density, f (X) ≥ 0,
∫

X f (X)dX = 1, where X may be real scalar
x, complex scalar x̃, real vector/matrix X, or complex vector/matrix X̃, a is a fixed real
scalar anchoring point, α is a real scalar parameter, and η > 0 is a real scalar constant so
that the deviation of α from a is measured in η units. In the real scalar case, we can see
that when α→ a, then (4) goes to the Shannon entropy in (1). Therefore, for vector/matrix
variables in the real and complex domain, one has a generalization of the Shannon entropy
in (4). If (3) is optimized under the constraint that the first moment E[x] in f (x) is fixed;
then, it does not lead directly to Tsallis’ statistics. One must optimize (3) in the escort
density mentioned above under the restriction that the first moment in the escort density
is fixed. Then, one obtains Tsallis’ statistics. If (4) is used, then one can derive various
real and complex, scalar, vector, or matrix-variate distributions directly from f (X) by
imposing moment-like restrictions in f (X). A particular case of (4) for a = 1, η = 1,
introduced by the second author was applied by [5] in time-series analysis, fractional
calculus, and other areas. The researchers in [6] used a particular case of (4) in record
values, ordered random variables, and derived some properties, including characterization
theorems. In [7] discussed the analytical properties of the classical Mittag–Leffler function
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as being derived as the solution of the simplest fractional differential equation governing
relaxation processes. In [8] studied the complexity of the ultraslow diffusion process using
both the classical Shannon entropy and its general case with the inverse Mittag–Leffler
function in conjunction with the structural derivative.

In the present article, the term “entropy” is used as a mathematical measure of
uncertainty or information characterized by some basic axioms, as illustrated by [3]. Thus,
it is a functional resulting from a set of axioms, that is, a function that can be interpreted in
terms of a statistical density in the continuous case and in terms of multinomial probabilities
in the discrete case. A general discussion of “entropy” is not attempted here because, as per
Von Neumann, “whoever uses the term ‘entropy’ in a discussion always wins since no one
knows what entropy really is, so in a debate, one always has the advantage”. An overview
of various entropic functional forms used so far in the literature is available from [9], along
with their historical backgrounds and an account of the numbers of citations of these
various functional forms. Hence, no detailed discussion of various entropic functional
forms is attempted in the present paper. The concept of entropy is applied in general
physics, information theory, chaos theory, time series, computer science, data mining,
statistics, engineering, mathematical linguistics, stochastic processes, etc. An account of the
entropic universe was given by [10], along with answers to the following questions: How
different concepts of entropy arose, what the mathematical definitions of each entropy
are, how entropies are related to each other, which entropy is appropriate in which areas
of application, and their impacts on the scientific community. Hence, the present article
does not attempt to repeat the answers to these questions again. The present paper is
about one entropy measure on a real scalar variable, its generalizations to vector/matrix
variables in the real and complex domains, and an illustration of how this entropy can
be optimized under various constraints to derive various statistical densities in the scalar,
vector, and matrix variables in the real and complex domains. Because the entropy measure
to be considered in the present article does not contain derivatives, the method of calculus
of variation is used for optimization so that the resulting Euler equations will be simple.
Mathematical variables and random variables are treated in the same way so that the
double notations used for random variables are avoided. In order to avoid having too
many symbols and the resulting confusion, scalar variables are denoted by lower-case
letters and vector/matrix variables are denoted by capital letters so that the presentation is
concise, consistent, and reader-friendly.

Entropy as an Expected Value

Shannon entropy S( f ) can be looked upon as an expected value of −c ln f (x). In

Mathai’s entropy (4), one can write the numerator as
∫

X{[ f (X)]
a−α

η − 1} f (X)dX, which is

the expected value of [ f (X)]
a−α

η − 1. Then, (4) is the following expected value:

Mα( f ) = E[
{ f (X)}

a−α
η − 1

α− a
]. (5)

The quantity in the expected value operator goes to − 1
η ln f (X) when α→ a, which is the

same as the Shannon case for c = 1
η . Therefore, the quantity inside the expectation operator

is an approximation to − 1
η ln f (X).

2. Optimization of Mathai’s Entropy for the Real Scalar Case

Let x be a real scalar variable and let f (x) be a density function, that is, f (x) ≥ 0 for
all x and

∫
x f (x)dx = 1. Consider the optimization of (4) under the following moment-

like constraints:
E[xγ( a−α

η )
] = fixed and E[xγ( a−α

η )+δ
] = fixed
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over all possible densities f (x). Then, if we use calculus of variation for the optimization
of (4), the Euler equation is the following:

∂

∂ f
[ f 1+( a−α

η ) − λ1xγ( a−α
η ) f (x) + λ2xγ( a−α

η )+δ f (x)] = 0⇒

(1 +
a− α

η
) f

a−α
η = λ1xγ( a−α

η )
[1− b(a− α)xδ]⇒

f1(x) = c1xγ[1− b(a− α)xδ]
η

a−α , α < a (6)

where λ1 and λ2 are Lagrangian multipliers and λ2
λ1

is taken as b(a− α) for convenience for
α < a, b > 0, γ > 0, δ > 0, η > 0; a is a fixed real scalar constant, 1− b(a− α)xδ > 0, and c1
is the normalizing constant. For α > a, f1(x) changes into

f2(x) = c2xγ[1 + b(α− a)xδ]−
η

α−a (7)

for α > a, b > 0, η > 0, δ > 0, γ > 0, x ≥ 0. When α→ a, both f1(x) and f2(x) go to

f3(x) = c3xγe−bηxδ
(8)

for b > 0, η > 0, δ > 0, γ > 0, x ≥ 0. Observe that all three functions fi(x), i = 1, 2, 3 can
be reached through the pathway parameter α. From f1(x), one can go to f2(x) and f3(x).
Similarly, from f2(x), one can obtain f1(x) and f3(x). Hence, f1(x) or f2(x) is Mathai’s
pathway model for the real scalar positive variable x as a mathematical model or as a
statistical model. The model f1(x) is a generalized type-1 beta model, f2(x) is a generalized
type-2 beta model, and f3(x) is a generalized gamma model. For δ = 2, γ = 0, f3(x) is a real
scalar Gaussian model. For γ = 2, δ = 2, f3(x) is a Maxwell–Boltzmann density for x ≥ 0,
and for γ = 1

2 , δ = 2, x ≥ 0, f3(x) is the Rayleigh density for the real scalar positive variable
case. If a location parameter is desired, then x is replaced by x−m in all of the above models,
where m is the relocation parameter. For γ = 0, δ = 1, η = 1, a = 1, α = q, fi(x), i = 1, 2, 3
is Tsallis’ statistic of non-extensive statistical mechanics; see [4] Tsallis (1988). Hundreds of
articles have been published on Tsallis’ statistics. For δ = 1, η = 1, a = 1, α = 1, f2(x) and
f3(x)—but not f1(x)—provide superstatistics of statistical mechanics. Several articles have
been published on superstatistics.

Fermi–Dirac and Bose–Einstein densities are also available from the same procedure.
In this case, the second factor xδ in the constraint is replaced by ecx, c > 0, x ≥ 0, and the
Lagrangian multipliers are taken as −λ1 and −λ2 so that the second factor in Equation (6)
becomes (λ1 + λ2ecx)−η/(α−a) for α > a with (λ1 + λ2ecx) > 0 to create a density function.
Now, take γ = 0, η = 1, α − a = 1. Then, for λ1 = 1, λ2 = ed and for some constant
d, this gives the Fermi–Dirac density, and for λ1 = −1 and λ2 = ed, this gives Bose–
Einstein density.

In model-building situations, if f3(x) is the generalized gamma model, Maxwell–
Botlzmann model (γ = 2, δ = 2), Rayleigh model (γ = 1

2 , δ = 2), or Gaussian model
(γ = 0, δ = 2) and is the stable or ideal situation in a physical system, then f1(x) and f2(x)
provide the unstable or chaotic neighborhoods, and through the pathway parameter α, one
can model the stable situation, the unstable neighborhoods, and the transitional stages in a
data analysis situation. This is the pathway idea of Mathai.

3. Constraints in Terms of the Ellipsoid of Concentration in the Real p-Variate Case

Let X be a p× 1 real vector with distinct real scalar variables xj as elements; X′ =
(x1, . . . , xp), where a prime denotes the transpose. Let µ be a p× 1 location vector. Let
the covariance matrix in X be Σ = E[(X − µ)(X − µ)′], µ = E[X]; then, Σ = Σ′, and
let Σ > O (real positive definite). Then, the square of the Euclidean distance of X from
the point of location µ is (X − µ)′(X − µ), and the generalized distance of X from µ is
(X− µ)′Σ−1(X− µ). Because Σ is real positive definite, u = (X− µ)′Σ−1(X− µ) is known
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as the ellipsoid of concentration. The probability content of this ellipsoid of concentration
is an important quantity in statistical analysis. Let us consider constraints in terms of
moments of the ellipsoid of concentration u. Consider the following constraints:

E[uγ( a−α
η )

] = fixed and E[uγ( a−α
η )+δ

] = fixed

over all possible densities f (X), where X is a p× 1 vector random variable. Then, optimiz-
ing Mathai’s entropy in (4) for all possible densities f (X) and proceeding as in Section 2,
we have the following three densities: For α < a,

f1(X) = C1[(X− µ)′Σ−1(X− µ)]γ[1− b(a− α)((X− µ)′Σ−1(X− µ))δ]
η

a−α (9)

for α < a, b > 0, γ > 0, δ > 0, Σ > O, η > 0. For α > a, the model in (9) changes into
the model

f2(X) = C2[(X− µ)′Σ−1(X− µ)]γ[1 + b(α− a)((X− µ)′Σ−1(X− µ))δ]−
η

α−a (10)

for α > a, b > 0, γ > 0, δ > 0, η > 0, Σ > O, and for α→ a, the models in both (9) and (10)
go to the model

f3(X) = C3[(X− µ)′Σ−1(X− µ)]γe−bη((X−µ)′Σ−1(X−µ))δ
(11)

for b > 0, η > 0, Σ > O, where Ci, i = 1, 2, 3 are the normalizing constants. These
normalizing constants can be evaluated, and further properties of the models can be
studied with the help of the following results from [11]:

Lemma 1. Let X = (xij) be a p× q real matrix with distinct real scalar variables xij as elements.
Let A be p× p and B be q× q constant nonsingular matrices. Then,

Y = AXB, |A| 6= 0, |B| 6= 0⇒ dY = |A|q|B|pdX. (12)

For the proof of this result, as well as for other similar results, see [11]. We will state
one more result from [11] here without proof.

Lemma 2. Let X be real p× q, p ≤ q, and rank p matrix with distinct real scalar variables as
elements. Let S = XX′ so that S is p× p symmetric and positive definite. Then, after integrating
out over the Stiefel manifold,

dX =
π

pq
2

Γp(
q
2 )
|S|

q
2−

p+1
2 dS (13)

where, for example, Γp(α) is the real matrix-variate gamma given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1
2
)...Γ(α− p− 1

2
),<(α) > p− 1

2
(14)

=
∫

S>O
|S|α−

p+1
2 e−tr(S)dS,<(α) > p− 1

2
(15)

where <(·) indicates the real part of (·), S > O is p× p real positive definite, and tr(·) indicates
the trace of (·).
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Evaluation of the Normalizing Constants

Consider f1(X) of (9). Let Y = Σ−
1
2 (X − µ) ⇒ dY = |Σ|− 1

2 dX by using Lemma 1,
where Σ−

1
2 is the positive definite square root of Σ−1. Let s = Y′Y, which is 1× 1 because

Y′ is 1× p. Then, from Lemma 2, dY = π
p
2

Γ( p
2 )

s
p
2−1ds. Therefore, the total integral is

1 =
∫

X
f1(X)dX

= C1

∫
X
[(X− µ)′Σ−1(X− µ)]γ[1− b(a− α)((X− µ)′Σ−1(X− µ))δ]

η
a−α dX

= C1|Σ|
1
2

∫
Y
[Y′Y]γ[1− b(a− α)(Y′Y)δ]

η
a−α dY

= C1|Σ|
1
2

π
p
2

Γ( p
2 )

∫ ∞

s=0
sγ+

p
2−1[1− b(a− α)sδ]

η
a−α ds

= C1|Σ|
1
2

π
p
2

Γ( p
2 )

δ[b(a− α)]−
1
δ (γ+

p
2 )

Γ( 1
δ (γ + p

2 ))Γ(1 +
η

a−α )

Γ(1 + η
a−α + 1

δ (γ + p
2 ))

for α < a. The last step is obtained by integrating out s by using a real type-1 beta integral.
Hence, for α < a, the normalizing constant is

C1 =
1

|Σ| 12
Γ( p

2 )

π
p
2
[b(a− α)]

1
δ (γ+

p
2 )δ

Γ(1 + η
a−α + 1

δ (γ + p
2 ))

Γ( 1
δ (γ + p

2 ))Γ(1 +
η

a−α )
(16)

for α < a, b > 0, η > 0, δ > 0, γ > 0, Σ > O. In a similar manner, and by integrating out
s by using a real type-2 beta integral, we have the normalizing constant C2 for α > a as
the following:

C2 =
1

|Σ| 12
Γ( p

2 )

π
p
2
[b(α− a)]

1
δ (γ+

p
2 )δ

Γ( η
α−a )

Γ( 1
δ (γ + p

2 ))Γ(
η

α−a −
1
δ (γ + p

2 ))
(17)

for α > a, η
α−a −

1
δ (γ + p

2 ) > 0, γ > 0, δ > 0, η > 0, Σ > O, and for α→ a we have

C3 =
1

|Σ| 12
Γ( p

2 )

π
p
2
[bη]

1
δ (γ+

p
2 )

δ

Γ( 1
δ (γ + p

2 ))
(18)

for b > 0, η > 0, δ > 0, γ > 0, Σ > O.
Observe that the model in (9) is a multivariate generalized real type-1 beta model, (10)

is a multivariate generalized real type-2 beta model, and (11) is a multivariate generalized
real gamma model. For δ = 2, γ = 2, (11) is also a real multivariate Maxwell–Boltzmann
model, and for δ = 2, γ = 1

2 , (11) is a real multivariate Rayleigh model. The corresponding

densities for Y = Σ−
1
2 (X − µ) can be called the standard real multivariate Maxwell–

Boltzmann and Rayleigh densities, respectively. If the Maxwell–Boltzmann and Rayleigh
densities are the stable distributions in a physical system, then the unstable or chaotic
neighborhoods are available from (9) and (10), and all of the situations, the stable situation,
the unstable neighborhoods, and the transitional stages can be reached through the pathway
parameter α. For γ = 0, the model in (9) is very useful in real multivariate reliability
analysis; see [12,13]. The model in (10) for γ = 0 corresponds to a multivariate version of
Student-t, Cauchy, multivariate F, and related distributions; see [14].

From the normalizing constants C1, C2, C3, one can also obtain the h-th moment of the
ellipsoid of concentration for an arbitrary h. That is, for α < a,

E[b(a− α)(X− µ)′Σ−1(X− µ)]h =
Γ( 1

δ (γ + h + p
2 ))

Γ( 1
δ (γ + p

2 ))

Γ(1 + η
a−α + 1

δ (γ + p
2 ))

Γ(1 + η
a−α + 1

δ (γ + h + p
2 ))

(19)



Entropy 2021, 23, 754 7 of 16

for <(γ + h + p
2 ) > 0. The density coming from (iv) is an H-function. For the theory and

applications of the H-function, see [15]. Then, [b(a− α)(X− µ)′Σ−1(X− µ)]
1
δ is distributed

as a real scalar type-1 beta random variable with the parameters (γ + p
2 , 1 + η

a−α ) for
α < a. Similarly, b(α − a)(X − µ)′Σ−1(X − µ) has an H-function distribution, whereas
[b(α− a)(X − µ)′Σ−1(X − µ)]

1
δ is a real scalar type-2 beta variable with the parameters

(γ + p
2 , η

α−a − (γ + p
2 )) for α > a, and [bη(X − µ)′Σ−1(X − µ)]

1
δ is a real scalar gamma

random variable with the parameters (γ + p
2 , 1).

Theorem 1. For the f1(X), f2(X), f3(X) defined in (9)–(11), respectively, [b(a− α)(X− µ)′Σ−1

(X − µ)]
1
δ is a real scalar type-1 beta random variable with the parameters (γ + p

2 , 1 + η
a−α )

for α < a; [b(α− a)(X− µ)′Σ−1(X− µ)]
1
δ is a real scalar type-2 beta random variable with the

parameters (γ+ p
2 , η

α−a − (γ+ p
2 )) for α > a and η

α−a − (γ+ p
2 ) > 0; [bη(X−µ)′Σ−1(X−µ)]

1
δ

is a real scalar gamma random variable with the parameters (γ + p
2 , 1).

Note 1. We can relax the condition δ > 0. Note that the models in (10) and (11) are also valid for
δ < 0, and by defining the support appropriately, we can relax the condition δ > 0 in (9) as well.

Note 2. Consider a function g((X− µ)′Σ−1(X− µ)) for g(r2) ≥ 0 for some real scalar variable
r and let

∫
r g(r2)dr < ∞. Consider the optimization of Mathai’s entropy in (4) over all possible

densities f (X) and under the constraint

E[g((X− µ)′Σ−1(X− µ))]
a−α

η = fixed

over all f (X), where the expectation is taken in f (X); then, we end up with an elliptically contoured
distribution for f (X) when the corresponding density for Y = Σ−

1
2 (X − µ) is a spherically

symmetric distribution that is invariant under orthonormal transformations or under the rotation
of the axes of coordinates.

4. Real Matrix-Variate Case

Let X = (xij) be a real p× q, p ≤ q, and rank p matrix with distinct real scalar variables
xij as elements. Let A > O be a p× p constant positive definite matrix and let B > O be

a q× q constant positive definite matrix. Let u = tr(A
1
2 XBX′A

1
2 ). This u is an important

quantity in statistical literature. Hence, we will impose restrictions in terms of moments of
u. Consider the optimization of Mathai’s entropy in (4) over all densities f (X), where X is
a p× q matrix, as defined above, subject to the constraints:

E[uγ( a−α
η )

] = fixed and E[uγ( a−α
η )+δ

] = fixed

over all possible densities f (X). Then, proceeding as in Section 3, we end up with the
following densities, where we use the same notations of fi(X), Ci, i = 1, 2, 3 in order to
avoid having too many symbols: For α < a,

f1(X) = C1[tr(A
1
2 XBX′A

1
2 )]γ[1− b(a− α)(tr(A

1
2 XBX′A

1
2 ))δ]

η
a−α ; (20)

For α > a,

f2(X) = C2[tr(A
1
2 XBX′A

1
2 )]γ[1 + b(α− a)(tr(A

1
2 XBX′A

1
2 ))δ]−

η
α−a (21)

and for α→ a,

f3(X) = C3[tr(A
1
2 XBX′A

1
2 )]γe−bη(tr(A

1
2 XBX′A

1
2 )δ)δ

. (22)

For evaluating the normalizing constants, we use the following transformations: Y =

A
1
2 XB

1
2 ⇒ dY = |A|−

q
2 |B|−

p
2 dX, s = tr(YY′) = the sum of squares of all the pq elements
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in Y, and, hence, tr(YY′) = ZZ′, where Z is a 1 × pq vector. Then, from Lemma 2,

s = ZZ′ ⇒ dY = dZ = π
pq
2

Γ( pq
2 )

s
pq
2 −1ds. Then, for α < a, we evaluate the s-integral by using

a real scalar type-1 beta integral; for α > a, we evaluate the s-integral by using a real scalar
type-2 beta integral; for α → a, the s-integral is evaluated by using a real scalar gamma
integral. Then, the normalizing constants are the following:

C1 = |A|
q
2 |B|

p
2

Γ( pq
2 )

π
pq
2

δ[b(a− α)]
1
δ (γ+

pq
2 ) Γ(1 + η

a−α + 1
δ (γ + pq

2 ))

Γ( 1
δ (γ + pq

2 ))Γ(1 + η
a−α )

(23)

C2 = |A|
q
2 |B|

p
2

Γ( pq
2 )

π
pq
2

δ[b(α− a)]
1
δ (γ+

pq
2 ) Γ( η

α−a )

Γ( 1
δ (γ + pq

2 ))Γ( η
α−a −

1
δ (γ + pq

2 ))
(24)

C3 = |A|
q
2 |B|

p
2

Γ( pq
2 )

π
pq
2

δ[bη]
1
δ (γ+

pq
2 ) 1

Γ( 1
δ (γ + pq

2 ))
(25)

where, in (23), the conditions are α < a, A > O, B > O, b > 0, η > 0, δ > 0, γ > 0; in (24),
the conditions are α > a, A > O, B > O, b > 0, η > 0, δ > 0, γ > 0, η

α−a −
1
δ (γ + pq

2 ) > 0;
in (25), the conditions are A > O, B > O, b > 0, η > 0, γ > 0, δ > 0.

Observe that (21) and (22) are available from (20). Similarly, (20) and (22) are available
from (21). In other words, all densities in (20)–(22) are available through the pathway
parameter α. Note that (22) for δ = 1, γ = 1 can be taken as a multivariate version
of Maxwell–Boltzmann density coming from a rectangular matrix-variate real random
variable. Similarly, for δ = 1, γ = 1

2 , one can take (22) as a version of the multivariate
real Rayleigh density coming from a rectangular matrix-variate real random variable.
For γ = 0, δ = 1, (20) is a real rectangular matrix-variate Gaussian density. One can
consider (20) as a generalized real multivariate type-1 beta density, (21) as a generalized
real multivariate type-2 beta density, and (22) as the corresponding gamma density. For
γ = 0 ,the model in (20) is a suitable model for reliability analysis for a real multivariate
situation. As observed in Section 3, one can see that tr(A

1
2 XBX′A

1
2 ) has an H-function

distribution for α < a, α > a, α → a. In addition, for α < a, [b(α− a)tr(A
1
2 XBX′A

1
2 )]

1
δ

is a real scalar type-1 beta distributed with the parameters (γ + pq
2 , 1 + η

a−α ); for α > a,

[b(α − a)tr(A
1
2 XBX′A

1
2 )]

1
δ is a real scalar type-2 beta distributed with the parameters

(γ+ pq
2 , η

α−a − (γ+ pq
2 )); for α→ a, [bηtr(A

1
2 XBX′A

1
2 )]

1
δ is a real scalar gamma distributed

with the parameters (γ + pq
2 , 1).

Note 3. If a location parameter p× q matrix M is to be introduced, then replace X with X −M
everywhere. If q ≤ p and if X is of rank q, then one can consider v = tr(B

1
2 X′AXB

1
2 ). Then,

parallel results hold for all of the results in Section 4 by interchanging A with B and p with q.

5. Constraints in Terms of Determinants

Let X = (xij) be a p × q, p ≤ q, and rank p matrix with distinct elements xij. Let
A > O be p × p and B > O be q × q constant positive definite matrices. Consider the
optimization of Mathai’s entropy (4) under the constraint

E[|I − b(a− α)A
1
2 XBX′A

1
2 |] = fixed

over all real p× q, p ≤ q, and rank p matrix-variate densities f (X). Then, following the
same procedure as in the above cases, we end up with the density

f1(X) = C1|I − b(a− α)A
1
2 XBX′A

1
2 |

η
a−α (26)
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for α < a, b > 0, η > 0, A > O, B > O, I − b(a− α)A
1
2 XBX′A

1
2 > O, and a is a fixed scalar

constant. In order to avoid having too many symbols, we will use the same notations of
fi(X), Ci, i = 1, 2, 3 in this section. For α > a, the model in (26) changes into

f2(X) = C2|I + b(α− a)A
1
2 XBX′A

1
2 |−

η
α−a (27)

for α > a, b > 0, η > 0, A > O, B > O. When α→ a, both f1(X) and f2(X) go to

f3(X) = C3e−bηtr(A
1
2 XBX′A

1
2 ) (28)

for b > 0, η > 0, A > O, B > O. The transition of (26) and (27) to (28) can be seen from the
following properties. Let λ1, . . . , λp be the eigenvalues of A

1
2 XBX′A

1
2 . Then,

|I − b(a− α)A
1
2 XBX′A

1
2 |

η
a−α =

p

∏
j=1

[1− b(a− α)λj]
η

a−α .

However, from the definition of the mathematical constant e, we have limα→a−(1− b(a−
α)λj)

η
a−α = e−bηλj . In a similar manner, limα→a+(1 + b(α− a)λj)

− η
α−a = e−bηλj . Then, the

product gives the sum of the eigenvalues or the trace in the exponent and, hence, the
result. The normalizing constants Ci, i = 1, 2, 3 can be evaluated by using the following
transformations: Y = A

1
2 XB

1
2 ⇒ dY = |A|

q
2 |B|

p
2 dX by using Lemma 1 or A = YY′ ⇒

dY = π
pq
2

Γp(
q
2 )
|S|

q
2−

p+1
2 dS by using Lemma 2. Then, evaluating the S-integral by using a real

matrix-variate type-1 beta integral for α < a, by using a real matrix-variate type-2 beta
integral for α > a, or by using a real matrix-variate gamma integral for α→ a, we obtain
the results, where, for example, Γp(α) is the real matrix-variate gamma defined earlier
in (14).

5.1. Modification of the Constraint in Terms of a Determinant

Let us consider the matrices X, A, B as in Section 5. Consider the optimization of (4)
under the following constraint for α < a:

E[|A
1
2 XBX′A

1
2 |γ

(a−α)
η |I − b(a− α)A

1
2 XBX′A

1
2 |] = fixed

over all possible densities f (X). Then, proceeding as in the previous cases, we end up with
the following densities:

f1(X) = C1|A
1
2 XBX′A

1
2 |γ|I − b(a− α)A

1
2 XBX′A

1
2 |

η
a−α (29)

for α < a, b > 0, γ > 0, η > o, A > O, B > O, I − b(a− α)A
1
2 XBX′A

1
2 > O. For α > a,

we have
f2(X) = C2|A

1
2 XBX′A

1
2 |γ|I + b(α− a)A

1
2 XBX′A

1
2 |−

η
α−a (30)

for α > a, b > 0, η > 0, γ > 0, A > O, B > O, and for α→ a, we have

f2(X) = C3|A
1
2 XBX′A

1
2 |γe−bηtr(A

1
2 XBX′A

1
2 ) (31)

for b > 0, η > 0, A > O, B > O. Observe that, as in the previous cases, all three models
are available through the pathway parameter α from either f1(X) or f2(X). If f3(X)
is the stable situation in a physical system, then the unstable neighborhoods are given
by f1(X) and f2(X); these stable and unstable stages and the transitional stages can be
reached through α. For γ = 1, the model in (31) can be taken as the real rectangular
matrix-variate Maxwell–Boltzmann density, and for γ = 1

2 , it is the real rectangular matrix-

variate Rayleigh density. The corresponding densities of Y = A
1
2 XB

1
2 can be taken as the
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standard matrix-variate Maxwell–Boltzmann and Rayleigh densities. The corresponding
densities for S = YY′ can be taken as the isotropic or spherically symmetric matrix-variate
Maxwell–Boltzmann and Rayleigh densities. The normalizing constants can be evaluated
by using the transformations in Section 5 and then evaluating the S-integral by using real
matrix-variate type-1 beta, type-2 beta, and gamma integrals. The final expressions will be
the following:

C1 = |A|
q
2 |B|

p
2 [b(a− α)]pγ+

pq
2

Γp(
q
2 )

π
pq
2

Γp(γ + q
2 + p+1

2 + η
a−α )

Γp(γ + q
2 )Γp(

p+1
2 + η

a−α )
(32)

C2 = |A|
q
2 |B|

p
2 [b(α− a)]pγ+

pq
2

Γp(
q
2 )

π
pq
2

Γp(
η

α−a )

Γp(γ + q
2 )Γp(

η
α−a − γ− q

2 )
(33)

C3 = |A|
q
2 |B|

p
2 [bη]pγ+

pq
2

Γp(
q
2 )

π
pq
2

1
Γp(γ + q

2 )
(34)

where in (32) α < a, in (33) α > a and η
α−a − (γ + q

2 ) > 0, and in (32)–(34) A > O, B >
O, γ > 0, η > 0, γ > 0, b > 0.

Note 4. If a location parameter is needed, then replace X with X−M, where M is a p× q constant
matrix everywhere in Sections 5 and 5.1.

5.2. Arbitrary Moments

Let u = |A 1
2 XBX′A

1
2 |, and if the h-th moment of this determinant u for an arbitrary h

is needed, then this moment can be written down by looking at the normalizing constants
in (32)–(34). For α < a, the h-th moment is the following:

E[uh] = [b(a− α)]−p(γ+ q
2 )

Γp(γ + q
2 + h)

Γp(γ + q
2 )

Γp(
p+1

2 + η
a−α + γ + q

2 )

Γp(
p+1

2 + η
a−α + γ + q

2 + h)

= [b(a− α)]−p(γ+ q
2 )

p

∏
j=1

Γ(γ + q
2 + h− j−1

2 )

Γ(γ + q
2 −

j−1
2 )

Γ( p+1
2 + η

a−α + γ + q
2 −

j−1
2 )

Γ( p+1
2 + η

a−α + γ + q
2 −

j−1
2 + h)

E[b(a− α)u]h = E[uh
1]E[u

h
2 ]...E[u

h
p]

for <(h + γ + q
2 ) >

p−1
2 , where u1, . . . , up are independently distributed real scalar type-1

beta random variables, with uj having the parameters (γ+ q
2 −

j−1
2 , p+1

2 + η
a−α ), j = 1, . . . , p,

so that we have the following structural representation for α < a:

|b(a− α)A
1
2 XBX′A

1
2 | = u1 . . . up. (35)

Both sides have the same distribution. Similarly, for α > a, we have the following:

E[b(α− a)u]h =
p

∏
j=1

Γ(γ + q
2 −

j−1
2 + h)

Γ(γ + q
2 −

j−1
2 )

Γ( η
α−a − (γ + q

2 )−
j−1

2 )

Γ( η
α−a − (γ + q

2 )−
j−1

2 − h)

= E[vh
1]E[v

h
2] . . . E[vh

p]⇒
b(α− a)u = v1v2 . . . vp (36)

for <(h + γ + q
2 ) > p−1

2 , η
α−a − (γ + q

2 ) −
j−1

2 > 0, j = 1, . . . , p, where v1, . . . , vp are
independently distributed real scalar type-2 beta variables, with vj having the parame-

ters (γ + q
2 −

j−1
2 , η

α−a − (γ + q
2 )−

j−1
2 ), j = 1, . . . , p. For α → a, we have the following

from (34):
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E[bη u]h =
Γp(γ + q

2 + h)
Γp(γ + q

2 )
=

p

∏
j=1

Γ(γ + q
2 −

j−1
2 + h)

Γ(γ + q
2 −

j−1
2 )

= E[wh
1 ]E[w

h
2 ] . . . E[wh

p]⇒
bη u = w1 . . . wp (37)

for <(h+ γ+ q
2 ) >

p−1
2 , where w1, . . . , wp are independently distributed real scalar gamma

variables, with wj having the parameters (γ + q
2 −

j−1
2 , 1), j = 1, . . . , p.

Note 5. Note that u = |A 1
2 XBX′A

1
2 | = |YY′|. Let the rows of Y be Y1, . . . , Yp, where Yj is a

1× q real vector. Then, Yj can be considered to be a point in a q-dimensional Euclidean space. We
have p ≤ q of such points. These points (vectors) are linearly independent because we have assumed
that the matrix is of rank p. Taking the points in the order Y1, . . . , Yp, these points (vectors) create a
convex hull, and in this hull, a parallelotope is determined; the volume content of this parallelotope
is the determinant |YY′| 12 . Hence, the distribution of this determinant, as well as the moments, is
important in stochastic geometry or in geometrical probabilities and other related areas of image
processing, pattern recognition, etc. The scaling constants b(a− α) in (35), b(α− a) in (36), and
bη in (37) can be taken as unities for convenience. Then, the points Y1, . . . , Yp are type-1 beta
distributed in (35), type-2 beta distributed in (36), and gamma distributed in (37). In general,
Y1, . . . , Yp have pathway distributions, or these are pathway-distributed random points in q-space.

Note 6. If q ≤ p and the matrix X is of rank q, then we may consider B
1
2 X′AXB

1
2 . Then,

results corresponding to the results in Sections 5, 5.1 and 5.2 are available by interchanging A
with B and p with q. Hence, a separate discussion is not needed in this case. Observe also that
tr(A

1
2 XBX′A

1
2 ) = tr(B

1
2 X′AXB

1
2 ), where one is a p× p matrix and the other is a q× q matrix.

6. Complex Case

For a matrix A, its transpose will be written as A′ and its complex conjugate transpose
as A∗. If A = A∗, then A is called Hermitian. Any complex matrix A can be written as
A = A1 + iA2, i =

√
(−1), A1, A2 real. When A is Hermitian, then A1 = A′1, A2 = −A′2,

that is, A1 is real symmetric and A2 is real skew symmetric. If A is p× p Hermitian positive
definite, then A = A∗ > O (Hermitian positive definite). The determinant of A is written
as |A|, as well as det(A), and the absolute value of the determinant will be written as
|det(A)| =

√
[det(A)][det(A∗)] =

√
[det(AA∗)]. Variables in the complex domain will be

written with a tilde, such as X̃. In order to optimize Mathai’s entropy (4) over the density
f (X̃) in the complex domain, we need some results on Jacobians. These will be given here
as lemmas without proofs. For the proofs and for other related results in the complex
domain, see [11].

Lemma 3. Let X̃ = (x̃ij) be p× q with distinct complex scalar elements x̃ij. Let A and B be p× p
or q× q nonsingular constant matrices, respectively—real or complex. Then,

Ỹ = AX̃B, |A| 6= 0, |B| 6= 0⇒ dỸ = |det(AA∗)|q|det(BB∗)|pdX̃. (38)

Lemma 4. Let X̃ = (x̃ij) be a p× q, p ≤ q, and rank p matrix with distinct complex elements
x̃ij. Let S̃ = X̃X̃∗, which is p× p Hermitian positive definite. Then, after integrating over the
Stiefel manifold,

dX̃ =
πpq

Γ̃p(q)
|det(S̃)|q−pdS̃ (39)
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where Γ̃p(α) is a complex matrix-variate gamma given by

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p + 1),<(α) > p− 1 (40)

=
∫

S̃>O
|det(S̃)|α−pe−tr(S̃)dS̃,<(α) > p− 1. (41)

Optimization in the Complex Domain

As a first problem, let X̃ be a p× 1 vector variable in the complex domain with distinct
scalar complex elements. Let Σ > O be a p× p Hermitian positive definite constant matrix.
Consider the Hermitian form u = (X̃− µ)∗Σ−1(X̃− µ), where µ is a p× 1 constant vector.
This can be taken as the ellipsoid of concentration in 2p-dimensional Euclidean space or
as the ellipsoid of concentration in a p-dimensional complex domain. This ellipsoid is an
important quantity in statistical analysis, as well as in various other situations. When X̃ is a
vector random variable in the complex domain with the mean value E[X̃] = µ and with the
covariance matrix Σ = Cov(X̃) = E[(X̃− µ)(X̃− µ)∗], then u is the generalized distance of
X̃ from the point of the location of its expected value µ. Hence, we will optimize Mathai’s
entropy in (4) under moment-like constraints on u. Consider the following constraints:
For α < a,

E[uγ( a−α
η )

] = fixed and E[uγ( a−α
η )+δ

] = fixed

over all possible densities f (X̃), where a, α, η > 0, δ > 0, γ > 0 are all real scalar constants,
a is a fixed location, and α is a real parameter. For α < a, proceeding as in the real case, we
will end up with the following density:

f1(X̃) = c1[(X̃− µ)∗Σ−1(X̃− µ)]γ[1− b(a− α)((X̃− µ)∗Σ−1(X̃− µ))δ]
η

a−α (42)

for 1− b(a− α)(X̃− µ)∗Σ−1(X̃− µ) > 0, where c1 is the normalizing constant. In order to
avoid having too many symbols, we will use the same notations as in the real case, with
variables written with a tilde and constants without a tilde. For α > a, we will have the
following density:

f2(X̃) = c2[(X̃− µ)∗Σ−1(X̃− µ)]γ[1 + b(α− a)((X̃− µ)∗Σ−1(X̃− µ))δ]−
η

α−a (43)

for α > a, b > 0, η > 0, δ > 0, γ > 0. When α→ a, both f1(X̃) and f2(X̃) go to

f3(X̃) = c3[(X̃− µ)∗Σ−1(X̃− µ)]γe−bη(X̃−µ)∗Σ−1(X̃−µ) (44)

for b > 0, η > 0. For evaluating the normalizing constants c1, c2, c3, we will use the
following transformations: Ỹ = Σ−

1
2 (X̃ − µ) ⇒ dỸ = |det(Σ)|−1dX̃ by using Lemma 3,

where Σ−
1
2 is the Hermitian positive definite square root of the Hermitian positive definite

Σ−1; s = Y∗Y ⇒ dY = πq

Γ̃(q) sq−1ds by using Lemma 4, where Ỹ∗ is 1× p, and s is 1× 1.
Then, we evaluate the s-integral by using a real scalar type-1 beta integral for α < a, real
scalar type-2 beta integral for α > a, and real scalar gamma integral for α→ a. Then, we
have the following results:

c1 =
Γ(p)

|det(Σ)|πp δ[b(a− α)]
γ+p

δ
Γ(1 + η

a−α + γ+p
δ )

Γ( γ+p
δ )Γ(1 + η

a−α )
, α < a (45)

c2 =
Γ(p)

|det(Σ)|πp δ[b(α− a)]
γ+p

δ
Γ( η

α−a )

Γ( γ+p
δ )Γ( η

α−a − ( γ+p
δ ))

, α > a (46)

c3 =
Γ(p)

|det(Σ)|πp δ[bη]
γ+p

δ
1

Γ( γ+p
δ )

(47)
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for b > 0, η > 0, γ > 0, δ > 0, and in addition, in (46), η
α−a − ( γ+p

δ ) > 0. Observe that
through the pathway parameter α, one can reach all three densities f j(X̃), j = 1, 2, 3, and
hence, f1(X̃) or f2(X̃) is the pathway model in the complex domain for the p× 1 vector
random variable X̃. In model-building situations, if f3(X̃) is the stable model, then the
unstable neighborhoods are given by f1(X̃) and f2(X̃), and the transitional stages are also
reached through α.

For γ = 1, δ = 1, one can consider f3(X̃) in (44) as a multivariate Maxwell–Boltzmann
density in the complex domain. For γ = 1

2 , δ = 1, one can take (44) as a multivariate
Rayleigh density in the complex domain. For p = 1, we have the scalar variable Maxwell–
Boltzmann and Rayleigh densities in the complex domain from (44). The corresponding
real cases may be seen from [12,13]. Observe that (43) and (44) also hold for δ < 0, but
for δ < 0, the support must be redefined in (42). Hence, a form of multivariate Maxwell–
Boltzmann and Rayleigh densities can be defined for δ < 0 as well. In the complex domain,
these densities are defined over the whole complex space. In the complex scalar case, if
one has to confine to the sector <(x̃− µ) > 0, then we multiply the corresponding (44) by
1
2 for p = 1 so that one can consider, for example, a time variable that is real positive for
the real part and a phase variable for the complex part. Note that in the Rayleigh case for
p = 1, γ = 1

2 , we have [(x̃− µ)∗(x̃− µ)]
1
2 = |(x̃− µ)| =, which is the absolute value. For

γ = 0, (42) gives a very good model for multivariate reliability analysis in the complex
domain. Reliability analysis in the complex domain does not seem to have been discussed
in the literature.

7. Optimization with a Trace Constraint

Let X̃ be a p× q, p ≤ q, and rank p matrix with distinct complex scalar variables as
elements. Let A > O and B > O be p× p and q× q Hermitian positive definite constant
matrices, respectively. Let u = tr(A

1
2 X̃BX̃∗A

1
2 ), where A

1
2 is a Hermitian positive definite

square root of A. Consider the optimization of Mathai’s entropy in (4) for the density f (X̃),
where X̃ is p× q, as described here, subject to the constraints

E[tr(A
1
2 X̃BX̃∗A

1
2 )]

γ( a−α
η )

= fixed and E[tr(A
1
2 X̃BX̃∗A

1
2 )]

γ( a−α
η )+δ

= fixed

over all possible densities f (X̃), where X̃ is p× q, p ≤ q, and of rank p. Then, proceeding
as in the real case, we end up with the following densities: For α < a,

f1(X̃) = C1[u]γ[1− b(a− α)uδ]
η

a−α , α < a (48)

f2(X̃) = C2[u]γ[1 + b(α− a)uδ]−
η

α−a , α > a (49)

f3(X̃) = C3[u]γe−bηuδ
(50)

where u = tr(A
1
2 X̃BX̃∗A

1
2 ), and the normalizing constants are the following:

C1 = |det(A)|q|det(B)|p Γ(pq)
πpq δ[b(a− α)]

γ+pq
δ

Γ( γ+pq
δ + 1 + η

a−α )

Γ( γ+pq
δ )Γ(1 + η

α−a )
, (51)

for α < a, b > 0, γ > 0, δ > 0, A > O, B > O, η > 0;

C2 = |det(A)|q|det(B)|p Γ(pq)
πpq δ[b(α− a)]

γ+pq
δ

Γ( η
α−a )

Γ( γ+pq
δ )Γ( η

α−a − ( γ+pq
δ ))

, (52)

for α > a, b > 0, η > 0, γ > 0, δ > 0, A > O, B > O, η
α−a − ( γ+pq

δ ) > 0 and

C3 = |det(A)|q|det(B)|p Γ(pq)
πpq δ[bη]

γ+pq
δ

1

Γ( γ+pq
δ )

(53)
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for A > O, B > O, b > 0, η > 0, γ > 0, δ > 0.

Note that (50) can be considered as a multivariate version of the complex Maxwell–
Boltzmann and Rayleigh densities for (γ = 1, δ = 1) and (γ = 1

2 , δ = 1), respectively. If

q ≤ p and X̃ is of rank q, then we can take u = tr(B
1
2 X̃∗AX̃B

1
2 ) and proceed, as in the p ≤ q

case, with p and q interchanged and A and B interchanged. We obtain results parallel to
the ones above for the case of p ≤ q.

8. Constraints in Terms of Determinants

Let X̃ be p× q, p ≤ q, and of rank p with distinct complex scalar variables as elements.
Let A > O and B > O be p× p and q× q Hermitian positive definite constant matrices,
respectively. Consider the optimization of (4) under the constraint

E[|det(A
1
2 X̃BX̃∗A

1
2 )|γ(

a−α
η )|det(I − b(a− α)A

1
2 X̃BX̃∗A

1
2 )|] = fixed

over all possible densities f (X̃), where X̃ is p× q, p ≤ q, and of rank p. Then, proceeding
as in the real case, we have the following densities:

f1(X̃) = C1|det(A
1
2 X̃BX̃∗A

1
2 )|γ|det(I − b(a− α)A

1
2 X̃BX̃∗A

1
2 )|

η
a−α , α < a (54)

f2(X̃) = C2|det(A
1
2 X̃BX̃∗A

1
2 )|γ|det(I + b(α− a)A

1
2 X̃BX̃∗A

1
2 )|−

η
α−a , α > a (55)

f3(X̃) = C3|det(A
1
2 X̃BX̃∗A

1
2 )|γe−bηtr(A

1
2 X̃BX̃∗A

1
2 ), α→ a (56)

where in (54), I − b(a− α)A
1
2 X̃BX̃∗A

1
2 > O, and the normalizing constants are the following:

C1 = |det(A)|q|det(B)|p
Γ̃p(q)
πpq [b(a− α)]p(γ+q) Γ̃p(

p+1
2 + η

a−α + γ + q)

Γ̃p(γ + q)Γ̃p(
η

α−a )
(57)

for α < a, b > 0, γ > 0, η > 0, A > O, B > O;

C2 = |det(A)|q|det(B)|p
Γ̃p(q)
πpq [b(α− a)]p(γ+q) Γ̃p(

η
α−a )

Γ̃p(γ + q)Γ̃p(
η

α−a − (γ + q))
(58)

for α > a, b > 0, γ > 0, η > 0, A > O, B > O, η
α−a − (γ + q) > 0 and

C3 = |det(A)|q|det(B)|p
Γ̃p(q)
πpq [bη]p(γ+q) 1

Γ̃p(γ + q)
(59)

for A > O, B > O, b > 0, η > 0, γ > 0. Note that the model in (56) can be taken as the
complex rectangular matrix-variate Maxwell–Botzmann and Rayleigh densities for γ = 1
and γ = 1

2 , respectively. The corresponding real cases were given by [12,13]. The standard
versions of complex rectangular matrix-variate Maxwell–Boltzmann and Rayleigh densities
are available from (56) by considering the density of Y = A

1
2 X̃B

1
2 . Then, in the normalizing

constant C3, |det(A)|q|det(B)|p will be absent. The standard density is the following:

f4(Ỹ) =
Γ̃p(q)
πpq [ρ]p(γ+q) 1

Γ̃p(γ + q)
|ỸỸ∗|γe−ρtr(ỸỸ∗) (60)

where we have taken bη = ρ for convenience. Then, for p = 1, q = 1, we obtain the
complex scalar versions of the Maxwell–Boltzmann and Rayleigh densities from (61) as
the following:

f5(x̃) =
1
π

ργ+1

Γ(γ + 1)
[x̃x̃∗]γe−ρx̃x̃∗ , ρ > 0, γ > 0. (61)
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For γ = 1, we have the Maxwell–Boltzmann density in the complex scalar case, and for
γ = 1

2 , we have the Rayleigh density in the complex scalar case. Note that [x̃x̃∗]
1
2 = |x̃| =,

which is the absolute value of the scalar complex variable x̃. If the domain must be confined
to <(x̃) > 0, then multiply (61) by 1

2 .

8.1. Arbitrary Moments

As in the real case, we can consider the h-th moment of the absolute value of the
determinant |det(A

1
2 X̃BX̃∗A

1
2 )| for arbitrary h. Then, from (54), we have the following:

For α < a,

E[|det(b(a− α)A
1
2 X̃BX̃∗A

1
2 )|h] =

Γ̃p(γ + q + h)
Γ̃p(γ + q)

Γ̃p(γ + q + η
a−α )

Γ̃p(γ + q + η
a−α + h)

=
p

∏
j=1

Γ(γ + q− (j− 1) + h)
Γ(γ + q− (j− 1))

Γ(γ + q + η
a−α − (j− 1))

Γ(γ + q + η
a−α − (j− 1) + h)

= E[uh
1 ]E[u

h
2 ]...E[u

h
p]

for α < a and<(h+γ+ q) > p− 1, where u1, ..., up are mutually independently distributed
real scalar type-1 beta random variables, with uj having the parameters (γ + q − (j −
1), η

a−α ), j = 1, ..., p. Therefore, we have the structural representation

|det(b(a− α)A
1
2 X̃BX̃∗A

1
2 )| = u1...up (62)

where u1, ..., up are as defined above and α < a. From (55), we have the following:

E[|det(b(α− a)A
1
2 X̃BX̃∗A

1
2 )|h] =

Γ̃p(γ + q + h)
Γ̃p(γ + q)

Γ̃p(
η

α−a − (γ + q)− (j− 1))

Γ̃p(
η

α−a − (γ + q)− (j− 1)− h)

=
p

∏
j=1

Γ(γ + q− (j− 1) + h)
Γ(γ + q− (j− 1))

Γ( η
α−a − (γ + q)− (j− 1))

Γ( η
α−a − (γ + q)− (j− 1)− h)

= E[vh
1 ]E[v

h
2 ] . . . E[vh

p]

for α > a,<(h + γ + q) > p − 1,<(h + η
α−a − (γ + q)) > p − 1, where v1, . . . , vp are

mutually independently distributed real scalar type-2 beta random variables with the pa-
rameters (γ + q− (j− 1), η

α−a − (γ + q)− (j− 1)), j = 1, . . . , p, and we have the structural
representation

|det(b(α− a)A
1
2 X̃BX̃∗A

1
2 )| = v1 . . . vp (63)

for α > a, where v1, . . . vp are defined above. From (56), we have the following results:

E[|det(bηA
1
2 X̃BX̃∗A

1
2 )|h] =

Γ̃p(γ + q + h)
Γ̃p(γ + q)

=
p

∏
j=1

Γ(γ + q− (j− 1) + h)
Γ(γ + q− (j− 1))

= E[wh
1 ]E[w

h
2 ] . . . E[wh

p]

where <(h + γ + q) > p− 1, w1, . . . , wp are mutually independently distributed real scalar
gamma random variables with the parameters (γ + q− (j− 1), 1), j = 1, . . . , p, and we
have the structural representation

|det(bηA
1
2 X̃BX̃∗A

1
2 )| = w1w2 . . . wp (64)

where w1, . . . , wp are defined above. Note that if q ≤ p and X̃ is of rank q, then we can obtain

results for B
1
2 X̃∗AX̃B

1
2 that are parallel to those in Sections 8 and 8.1 by interchanging p

with q and A with B.
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9. Concluding Remarks

In this paper, it is shown that a large number of statistical densities belonging to the
pathway family [16] of densities in the scalar, vector, and matrix-variate cases in the real and
complex domains can be obtained by optimizing a certain entropy measure. The calculus
of variation technique was used for the optimization. The notations were simplified and
made consistent in order to avoid having too many symbols to denote different types
of variables. Mathematical variables and random variables are treated in the same way
to avoid the double notations that are usually used to denote random variables and the
resulting confusions.
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