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A B S T R A C T   

Non-spherical nanoparticles have gained popularity for their ability in changing the thermophysical properties of 
a nanofluid. The current work focuses on studying the significance of multiple slip and nanoparticle shape on 
stagnation point flow of blood-based silver nanofluid considering chemical reaction, induced magnetic field, 
thermal radiation, and linear heat source which is beneficial in cancer therapy, biomedical imaging, hyper-
thermia, and tumor therapy. Relevant similarity transformations are effectuated in converting the mathemati-
cally modeled governing equations into a system of ODEs and are then numerically resolved in MATLAB 
employing the adaptive Runge-Kutta method and the Newton Raphson method. Observations on the consequence 
of differing parameters on varying attributes are achieved via tables and graphs. Additionally, the shape effect of 
nanoparticles on various attributes is also evaluated. Linear heat source and thermal radiation parameters exhibit 
a constructive effect whereas the thermal slip parameter exhibits a destructive effect on temperature. Further, it 
is observed that the blade-shaped nanoparticle exhibits the greatest heat transfer rate followed by platelet, 
cylinder, and spherical-shaped nanoparticles, respectively.   

1. Introduction 

Nanofluid, discovered by Choi and Eastman [1], was known for its 
unparalleled heat transfer and cooling abilities. Choi proposed nanofluid 
as a suspension of nanoparticles (1–100 nm in size) and observed that the 
conventional fluid and nanofluid exhibit distinct physical and chemical 
properties. According to Ying-Qing et al. [2] and Oke et al. [3], the 
inherent nature of nanoparticles is bound to affect the temperature dis-
tribution. Neethu et al. [4] investigated the significance of the nano-
particle volume fraction on the hydromagnetic flow between two vertical 
porous plates moving in opposite directions based on the single-phase 
nanofluid model proposed by Tiwari and Das [5]. They observed a 
decline in the nanoliquid temperature profile due to augmenting nano-
particle volume fraction. However, augmenting nanoparticle volume 
fraction tends to increase the nanoliquid temperature in an unsteady 
nanoliquid flow past an inclined plate (see Mackolil and Mahanthesh 
[6]). A few studies exploring nanofluid flow can be seen in [7–11]. 

Particles of silver between 1 and 100 nm, called silver nanoparticles, 
have been proved to be beneficial in the medical field with their anti-
bacterial properties and also due to their applicability in the treatment of 
many diseases; namely cancer (see [12–14]). Abbasi et al. [15] examined 

the peristaltic transport of silver-water nanofluid in the presence of 
constant applied magnetic field considering Ohmic heating, velocity slip, 
thermal slip, and Hall effects. They observed that the addition of 5% 
silver nanoparticles reduced the velocity and temperature of the base 
fluid by 10% and 16%, respectively. The dominating nature of silver 
nanoliquid over copper nanoliquid on the heat transfer rate was observed 
by Hayat et al. [16] and Sravanthi [17]. In addition, Hayat et al. [18] 
noted that the Bejan number is more for Ag-water nanofluid. The incre-
ment of the average Nusselt number by increasing the volume fraction of 
nanoparticles for typical nanofluid is more sensible than hybrid nanofluid 
in an enclosure with rotating heat sources (see Jamiatia [19]). The study 
on the hydrothermal and irreversibility behaviour of a biologically syn-
thesized silver-water nanoliquid in a wavy microchannel heat sink, 
conducted by Al-Rashed et al. [20], revealed that the nanoliquid has a 
better cooling performance in comparison with pure water. 

The nanoparticles can be categorized into spherical and non-spherical 
nanoparticles based on their physical shape. Different shaped nano-
particle exhibits different properties and different heat transfer capabil-
ities (see Truong et al. [21]). Timofeeva et al. [22] analyzed the 
thermophysical properties of alumina nanofluid with different nano-
particle shapes; namely platelet, blade, brick, and cylinder; both practi-
cally and theoretically. Ellahi et al. [23] pointed out that the lowest 
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velocity and highest temperature of the nanoliquid were caused by the 
sphere and disc-shaped particles, respectively for the mixed convective 
nanoliquid flow past a vertical lengthening permeable sheet. In addition, 
Benkhedda et al. [24] reported that the maximum friction factor is 
exhibited by the platelet-shaped silver-titanium dioxide nanoparticles. 
The reduction in the temperature profile of Cu − CuO/blood with the 
increasing shape factor values was revealed by Tripathi et al. [25]. A 
comparative analysis of Ti − H2OandAg − H2Onanofluids on the effect of 
nanoparticle shape in a microchannel, conducted by Sindhu and Gireesha 
[26], showcased that the silver nanofluid exhibited higher entropy than 
the titanium nanofluid. They also observed that the entropy generation is 
high in the case of disc-shaped nanoparticles, followed by needle and 
sphere-shaped nanoparticles. Recently, Elnaqeeb et al. [27] investigated 
the dynamics of water conveying nanoparticles with various densities 
and shapes through a rectangular closed domain and observed that the 
heat transfer is maximal in the case of ternary-hybrid nanofluid made up 
of copper oxide, copper, and silver nanoparticles. 

Blood is a connective tissue in fluid form (see Sembulingam and 
Sembulingam [28]). Blood flow utilizing nanoparticles are important in 
the medical industry for cancer treatment and drug delivery. The sig-
nificance of partial slip and buoyancy on the blood-gold Carreau 
nanofluid flow over an upper horizontal surface of a paraboloid of 
revolution was investigated by Koriko et al. [29]. They observed that 
the maximum values for surface drag and the heat transfer rate was 
showcased by smaller values of Deborah number. The augmentation in 
the volume fraction of carbon nanotubes increased the blood temper-
ature (see Khalid et al. [30]). Dinarvand et al. [31] pointed out that the 
use of CuOandCu hybrid nanoparticles reduced the haemodynamic ef-
fect of the capillary relative to the pure blood case. In addition, Khan 
et al. [32] numerically simulated the nonlinear radiative flow of Casson 
gold-nanoliquid through a stretched rotating rigid disk subject to Lor-
entz force utilizing the three-stage Lobatto method. Recently, Ashraf 
et al. [33] utilized the generalized differential quadrature method to 
explore the peristaltic flow of blood-based Casson nanomaterial con-
taining platelet-shaped magnetite nanoparticles. Further, the signifi-
cance of partial slip due to lateral velocity and viscous dissipation for 
blood-gold Carreau nanomaterial and dusty fluid was elucidated by 

Koriko et al. [34]. A significant difference in the effect of partial slip on 
the dynamics of dusty fluid and blood-gold nanomaterial was observed. 

Induced magnetic field (IMF) is the additional magnetic field that 
gets induced on electrically conducting fluid in the presence of an 
external magnetic field. This phenomenon is due to the impact of a 
larger magnetic Reynolds number. IMF has applications in MRI, glass 
manufacturing, geophysics, and MHD generators, etc. IMF paired with 
blood flow plays a decisive role in blood pumps, treatment of cardiac 
diseases and has many other biomedical applications. Kumari et al. [35] 
explored the flow and heat transfer of an electrically conducting fluid 
(which is at rest) over an elongating sheet in the presence of sources/-
sinks and induced magnetic field. Later, the MHD flow over a length-
ening sheet in the presence of an induced magnetic field was 
reinvestigated by Ali et al. [36]. Iqbal et al. [37] scrutinized the influ-
ence of induced magnetic field on ferrofluid past a vertical stretching 
surface and observed that velocity profile enhanced for assisting flow 
with magnetic parameter. Gireesha et al. [38] numerically analyzed 
nanofluid stagnation point flow past a stretching surface attending IMF 
and found out that the induced magnetic field enhances with the 
intensifying hydromagnetic field. Iqbal et al. [39] elucidated the influ-
ence of induced magnetic fields on water-based copper and titanium 
dioxide nanofluids utilizing the Keller box method. An opposite relation 
was found to exist between magnetic parameter and temperature pro-
file. Further, Amjad et al. [40] studied the influence of Lorentz force and 
induced magnetic field on Casson micropolar nanoliquid over a 
permeable curved stretching/shrinking surface. 

Regarding stagnation point flow, the velocity of the fluid at the striking 
point of the rigid body is zero. It proposes many applications in engi-
neering, industry, and physiological fluid flows. Ali et al. [41] extended 
the work of Mahapatra and Gupta [42] to analyze the hydromagnetic 
stagnation point flow of an electrically conducting fluid over a length-
ening sheet in the presence of an induced magnetic field. Later, Junoh 
et al. [43] extended the work of Ali et al. [41] by considering the stag-
nation point flow past a stretching/shrinking sheet in a hybrid nano-
material. Abbas et al. [44] explored the stagnation-point hybrid nanofluid 
flow over a slip surface. They adopted the Runge-Kutta-Fehlberg method 
to numerically solve the nonlinear system of differential equations and 

Nomenclature 

a, c Dimensional constants 
DB Mass diffusivity (m2s− 1) 
kr Reaction rate constant(s− 1) 
Cslip Solutal slip parameter 
C Fluid concentration 
T Fluid temperature (K) 
CW Nanoparticle concentration near the wall 
TW Wall fluid temperature 
Cfx Local drag coefficient 
qT Heat source coefficient 
Pr Prandtl number 
qr Radiative heat flux 
Kr Chemical reaction parameter 
N1 Temperature slip factor 
Cp Specific heat 
u, v Velocity components (ms− 1) 
M0 Uniform magnetic field at infinity (Am− 1) 
T∞ Ambient fluid temperature 
Tslip Thermal slip parameter 
k* Mean absorption coefficient 
QT Linear heat source 
N2 Concentration slip factor 
Me Magnetic field at free stream 

Rd Thermal radiation parameter 
Shx Local Sherwood number 
Nux Local Nusselt number 
Rex Local Reynolds number 
x, y Cartesian coordinates(m) 
C∞ ambient nanoparticle concentration 
Le Lewis number 

Greek symbols 
ϑ Kinematic viscosity (m2s− 1) 
η Dimensionless variable 
σ* Stefan- Boltzmann constant 
λ Reciprocal of magnetic Prandtl number 
αm Magnetic diffusivity (m2s− 1) 
ϕ Nanoparticle volume fraction 
ρ Density of the fluid (kgm− 3) 
κ Thermal conductivity (Wm− 1K− 1) 
μe Magnetic permeability (kgms− 2A− 2) 
σ Electrical conductivity (kg− 1m− 3s3A2) 
β Magnetic parameter 
α Thermal diffusivity (m2s− 1) 

Subscripts 
nf Nanofluid 
f Conventional fluid  
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noted that the velocity is inversely proportional to the velocity ratio 
parameter. Al-Amri and Muthtamilselvan [45] investigated stagnation 
point nanofluid flow containing micro-organisms and found an enhanced 

velocity profile due to augmenting stagnation parameter. Some other 
studies concerning stagnation point flow can be seen in [46–49]. 

The slip boundary condition characterizes the relative movement of 
fluid with the boundary. Multiple slip corresponds to the case when 
more than one slip (velocity, thermal, or solutal) condition is consid-
ered. Daniel et al. [50] reported that the augmenting velocity slip 
parameter slows the velocity profile. Khan et al. [51] and Amanulla et al. 
[52] noted that multiple slip effects have a positive impact on boundary 
layer flow. The decrease in the heat transfer rate due to the velocity slip 
parameter was observed by Ibrahim and Negera [53]. Further, a 
decrease in the temperature and concentration profile was noted due to 
the increased thermal and solutal slip parameter values, respectively 
(see Barik et al. [54]). A few studies discussing the slip effects can be 
seen in [55–58]. 

Motivated by the above-mentioned studies, it is noted that the ef-
fect of multiple slip, spherical and non-spherical (cylinder, platelet, 
and blade) nanoparticles on the stagnation point flow of silver-blood 

Fig. 1. Figurative representation.  

Table 1 
Comparison of drag coefficient ( Cfx Re1/2

x ) with [47,62,63] for different A 
values when ϕ = β = 0.  

A Cfx Re1/2
x  

Iqbal et al. [47] Hayat et al. [62] Hayat et al. [63] Present study 

0.1 − 0.969386 − 0.96939 − 0.96937 − 0.9693861 
0.2 − 0.918107 − 0.91811 − 0.91813 − 0.9181071 
0.5 − 0.667263 − 0.66726 − 0.66723 − 0.6672637 
0.7 − 0.433475 − 0.43346 − 0.43345 − 0.4334756 
0.8 − 0.299388 − 0.29929 − 0.29921 − 0.2993888 
0.9 − 0.154716 − 0.15458 − 0.1545471 − 0.1547167 
1 0 0 0 0  

Fig. 2. f′(η) for differing A values.  

Fig. 3. f′(η) for differing β values.  
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nanofluid in the presence of an induced magnetic field has not yet been 
studied. This paper attempts to fill this gap. In addition, linear heat 
source, chemical reaction and thermal radiation effects are incorpo-
rated. Further, thermal and solutal slip effects are also considered for a 
realistic approach. The present study has applications in cancer ther-
apy, biomedical imaging, hyperthermia, and tumor therapy (see [21, 
59–61]). The impact of pertinent parameters on the flow profiles has 
been analyzed with an emphasis on the following research questions:  

• What is the significance of thermal slip and solutal slip parameters on 
the nanofluid temperature and nanofluid concentration, respectively?  

• How does the nanoparticle shape affect the flow profiles?  
• What is the variation in the nanofluid temperature with linear heat 

source, thermal radiation, and volume fraction of silver nanoparticles?  
• How sensitive are the physical quantities with spherical and non- 

spherical nanoparticles? 

2. Problem statement 

Two-dimensional steady stagnation point flow over a linearly elon-
gating sheet (Fig. 1) is considered under the ensuing assumptions: 

Fig. 4. f′(η) for differing ϕ values.  

Fig. 5. f′(η) for differing nanoparticle shapes.  

Fig. 6. Cf x Re1/2
x for differing nanoparticle shapes and β values.  

Fig. 7. Cf x Re1/2
x for differing nanoparticle shapes and ϕ values.  

Fig. 8. g′(η) for differing A values.  
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(i) The expanding sheet is positioned along xaxis and blood-based 
silver nanofluid occupies the regiony > 0.  

(ii) Uw(x) = cx and Ue(x) = ax corresponds to the velocity of the 
lengthening sheet and the free stream, respectively.  

(iii) Induced magnetic field vector, M = (M1,M2) is considered with 
M1 & M2 being the magnetic integrants along x and y direction, 
respectively.  

(iv) Chemical reaction, linear heat source, thermal radiation, and 
nanoparticle shape (sphere, cylinder, platelet, and blade) effects 
are incorporated.  

(v) Thermal and solutal slip effects are also considered. 

Governing equations [46–48,54] takes the form: 

∂u
∂x

+
∂v
∂y

= 0 (1)  

∂M1

∂x
+

∂M2

∂y
= 0 (2)  

u
∂u
∂x

+ v
∂u
∂y

−
μe

4πρnf

(

M1
∂M1

∂x
+M2

∂M1

∂y

)

= Ue
dUe

dx
−

μeMe

4πρnf

dMe

dx
+

(μnf

ρnf

)
∂2u
∂y2 (3)  

u
∂M1

∂x
+ v

∂M1

∂y
− M1

∂u
∂x

− M2
∂u
∂y

= αm
∂2M1

∂y2 (4)  

u
∂T
∂x

+ v
∂T
∂y

= αnf
∂2T
∂y2 +

qT(
ρCp
)

nf

(T − T∞) −
1

(
ρCp
)

nf

∂qr

∂y
(5)  

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 − kr(C − C∞) (6) 

Fig. 9. g′(η) for differing β values.  

Fig. 10. g′(η) for differing λ values.  

Fig. 11. g′(η) for differing nanoparticle shapes.  

Fig. 12. θ(η) for differing A values.  
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with 

u = Uw(x) = cx, v = 0,
∂M1

∂y
= M2 = 0, T = Tw + N1

∂T
∂y

, C

= Cw + N2
∂C
∂y

; at y = 0  

u→Ue(x) = ax,M1→Me(x) = M0x, T→T∞, C→C∞; as y→∞  

where αm = 1
4πμeσnf 

represents the magnetic diffusivity. 
Introducing the following similarity transformations: 

u = cxf ′

(η), v = −
̅̅̅̅̅̅̅
cϑf

√
f (η), M1 = M0xg′

(η), M2 = − M0

̅̅̅̅̅
ϑf

c

√

g(η),

η = y
̅̅̅̅̅c
ϑf

√

, θ(η) = T − T∞

Tw − T∞
, ψ(η) = C − C∞

Cw − C∞
.

and applying linearized Roseland approximation in equations (1) − (6), 
we get: 

f ′′′ = A1 A2

{

(f
′

)
2
− f f ′′ − A2 −

β
A2

{
(g

′

)
2
− g g′′ − 1

}
}

(7)  

g′′′ =
A5

λ
{ g f ′′ − f g′′ } (8)  

θ′′ =
− Pr { A3 f θ

′

+ QT θ }

A4 +
4
3Rd

(9)  

ψ ′′ = Kr Le ψ − Le f ψ ′ (10)  

subject to the boundary conditions 

f (0) = 0, f ′

(0) = 1, g(0) = 0, g′′(0) = 0, θ(0) = 1 + Tslip θ
′

(0), ψ(0)

= 1 + Cslip ψ ′

(0).

f ′

(∞)→A, g
′

(∞)→1, θ(∞)→0, ψ(∞)→0.

where the dimensionless parameters are : 

Fig. 13. θ(η) for differing ϕ values.  

Fig. 14. θ(η) for differing QT values.  

Fig. 15. θ(η) for differing Rd values.  

Fig. 16. θ(η) for differing Tslip values.  
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A =
a
c
, β =

μe

4 π ρf

(
M0

c

)2

, λ =
1

4 π μe σf ϑf
, Pr =

(
μCp

)

f

κf
, Rd =

4 σ∗ T∞
3

k∗ κf
,

QT =
qT

c
(
ρCp
)

f

, Kr =
kr

c
, Le =

ϑf

DB
, Tslip = N1

̅̅̅̅̅c
ϑf

√

, Cslip = N2

̅̅̅̅̅c
ϑf

√

.

The nanofluid models [24] incorporated are :  
Spherical Non-spherical 

μnf

μf 
=

1
(1 − ϕ)2.5 =

1
A1  

μnf

μf
= 1+ Ashape ϕ+ Bshape ϕ2 =

1
A1  

(continued on next column) 

Fig. 17. θ(η) for differing nanoparticle shapes.  

Table 2 
Thermophysical properties [16,30,31] of blood and silver.  

Property Blood (base fluid) Silver (nanoparticle) 

ρ 1063 10490 
Cp 3594 235 
κ 0.492 429 
σ 0.8 63 * 107  

Fig. 18. Nux Re− 1/2
x for differing nanoparticle shapes and ϕ values.  

Fig. 19. Nux Re− 1/2
x for differing nanoparticle shapes and QT values.  

Fig. 20. Nux Re− 1/2
x for differing nanoparticle shapes and Rd values.  

Fig. 21. Nux Re− 1/2
x for differing nanoparticle shapes and Tslip values.  
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(continued ) 

Spherical Non-spherical 

A2 =
ρnf

ρf
= (1 − ϕ)+ ϕ

(ρAg

ρf

)

A3 =
(ρCp)nf

(ρCp)f
= (1 − ϕ)+ ϕ

(
(ρCp)Ag

(ρCp)f

)

A4 =
κnf

κf
=

κAg + (s − 1)κf − (s − 1)ϕ(κf − κAg)

κAg + (s − 1)κf + ϕ(κf − κAg)

A5 =
σnf

σf
= 1+

3
(

σAg

σf
− 1
)

ϕ
(

σAg

σf
+ 2
)

−

(
σAg

σf
− 1
)

ϕ   

The nanoparticle shape properties [24] are:   
Sphere Cylinder Platelet Blade 

Ashape - 13.5 37.1 14.6 
Bshape - 904.4 612.6 123.3 
Shape factor,s 3 4.9 5.7 8.6  

Fig. 22. ψ(η) for differing A values.  

Fig. 23. ψ(η) for differing Le values.  

Fig. 24. ψ(η) for differing Kr values.  

Fig. 25. ψ(η) for differing Cslip values.  

Table 3 
Variation in Shx Re− 1/2

x when A = 0.5, β = 0.1, λ = 0.5 & ϕ = 0.1.  

Kr Le Cslip Shx Re− 1/2
x  

Sphere Cylinder Platelet Blade 

1.5 0.3 0.3 0.6166 0.6263 0.6261 0.6217 
2 0.6773 0.6852 0.6850 0.6815 
2.5 0.7298 0.7363 0.7362 0.7333 
2 0.2 0.3 0.5737 0.5808 0.5807 0.5774 

0.3 0.6773 0.6852 0.6850 0.6815 
0.4 0.7594 0.7675 0.7674 0.7638 

2 0.3 0.2 0.7265 0.7355 0.7354 0.7313 
0.3 0.6773 0.6852 0.6850 0.6815 
0.4 0.6343 0.6412 0.6411 0.6380  
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Physical quantities [47,49] (in dimensionless form) are given by: 

3. Numerical scheme and validation 

Equations(7) − (10) together with the boundary conditions are 
numerically resolved in MATLAB employing the adaptive Runge-Kutta 
method [64] (for solving) and Newton Raphson (for shooting). This is 
accomplished by initially assuming: 

Ξ1 = f , Ξ2 = f ′

, Ξ3 = f ′′, Ξ3
′

= f ′′′ ,

Ξ4 = g, Ξ5 = g′

, Ξ6 = g′′, Ξ6
′

= g′′′ ,

Ξ7 = θ, Ξ8 = θ
′

, Ξ8
′

= θ′′,

Ξ9 = ψ , Ξ10 = ψ ′

, Ξ10
′

= ψ ′′.

The reduced system of first-order ODE is given by: 

Ξ1
′

= Ξ2,

Ξ2
′

= Ξ3,

Ξ3
′

= A1 A2

{

(Ξ2)
2
− Ξ1 Ξ3 − A2 −

β
A2

{
(Ξ5)

2
− Ξ4 Ξ6 − 1

}
}

,

Ξ4
′

= Ξ5,

Ξ5
′

= Ξ6,

Ξ6
′

=
A5

λ
{ Ξ4 Ξ3 − Ξ1 Ξ6 },

Ξ7
′

= Ξ8,

Ξ8
′

=
− Pr { A3 Ξ1 Ξ8 + QT Ξ7 }

A4 +
4
3Rd

,

Ξ9
′

= Ξ10,

Ξ10
′

= Kr Le Ξ9 − Le Ξ1 Ξ10 .

with 

Ξ1(0) = 0, Ξ2(0) = 1, Ξ3(0) = Γ1, Ξ4(0) = 0, Ξ5(0) = Γ2, Ξ6(0) = 0,

Ξ7(0) = 1 + Tslip Γ3, Ξ8(0) = Γ3, Ξ9(0) = 1 + Cslip Γ4, Ξ10(0) = Γ4 .

where Γ1, Γ2, Γ3, Γ4 & Γ5 are estimated using the Newton Raphson 
method with a suitable initial guess. 

Validity of the code for the current problem has been adjudged 
through a restrictive correspondence of the present work with prior 
published works [47,62,63] (see Table 1) and a commendable agreement 
is noted. 

4. Results and discussion 

The consequence of influential parameters on velocity(f′(η)), con-
centration(ψ(η)), temperature(θ(η)), induced magnetic field(g′(η)) pro-
files and physical quantities are illustrated via Figs. 2–25. Prandtl 
number(Pr) and infinity are fixed at 21 and 5, respectively. Thermo-
physical properties of base fluid (blood) and silver (nanoparticle) are 
showcased in Table 2. 

Fig. 2 elucidates the positive impact of the stretching parameter (A) 
on f′(η) meaning that an augmentation in stretching parameter results in 
the escalation off′(η). Fig. 3 describes the deviations in f′(η) with β 
(magnetic parameter). An increase in β tends to increasef′(η). Fig. 4 
bespeaks the deviations in f′(η) with respect to ϕ (nanoparticle volume 
fraction). It can be observed that f′(η) decreases for augmenting ϕ 
values. This can be physically associated with the fact that ascendingϕ 
values, as pointed out by Mackolil and Mahanthesh [6], increases the 
nanofluid viscosity which in turn decreases the nanofluid velocity. The 
nanoparticle shape effect on velocity profile is depicted in Fig. 5. The 
highest nanofluid velocity profile is exhibited by cylinder-shaped silver 
nanoparticles followed by platelet, blade, and spherical-shaped nano-
particles, respectively. 

Figs. 6 & 7 elucidate the parallel effect of β & ϕ with the differing 
nanoparticle shapes on Cfx Re1/2

x . It is perceived that Cfx Re1/2
x is a 

decreasing function ofϕ and an increasing function ofβ. Further, it can be 
observed that the drag coefficient is highest for spherical-shaped silver 
nanoparticles and least for cylindrically shaped silver nanoparticles. 

Fig. 8 displays the negative impact of A on g′(η) whereas Fig. 9 dis-
plays the positive impact of β ong′(η). A commendable agreement is 
noted between the results observed in Figs. 8 & 9 and the work of Ali 
et al. [41]. Fig. 10 explains the mixed effect of λ (reciprocal of magnetic 
Prandtl number) ong′(η). Initially, elevating λ values decays g′(η) and 
afterwards, a reversed trend is observed. Fig. 11 represents nanoparticle 
shape effect ong′(η). The highest and lowest induced magnetic field 
profiles are recorded by cylindrical and spherical shaped silver nano-
particles, respectively. 

The consequence of A on θ(η) is graphed in Fig. 12. A decline in 
temperature is noted for the increasing A values. Fig. 13 throws light 
into the constructive nature of ϕ onθ(η). Physically, the improvement in 
θ(η) is due to the increased thermal conductivity of fluid caused by the 
hike in nanoparticle volume fraction (see Mackolil and Mahanthesh 
[65]). In addition, the inherent nature of nanoparticles is bound to affect 
the temperature distribution (see Ying-Qing et al. [2] and Oke et al. [3]). 
The influence of QT (linear heat source parameter) and Rd (thermal ra-
diation parameter) on θ(η) is analyzed in Figs. 14 & 15, respectively. 
Both parameters tend to increaseθ(η). This can be associated with the 
fact that an increase in QT & Rd as mentioned by Mackolil and 
Mahanthesh [66] supplies supplemental energy to the system which 
triggers a surge inθ(η). Biologically, the increase in temperature profiles 
due to augmenting nanoparticle volume fraction, linear heat source, and 
thermal radiation unveils that the nanofluid can be used for killing tu-
mors or cancerous cells (see Jama et al. [67]). The effect of Tslip (thermal 
slip parameter) is analyzed with the aid of Fig. 16. It is noted that 

Local drag coefficient : 

Cfx =
τω

ρf (UW)
2 =

μnf
∂u
∂y

|y=0

ρf (UW)
2 ⇒ Cfx Re1/2

x =
f ′′(0)
A1

.  

Local Nusselt number : 

Nux =
x qω

κf (TW − T∞)
=

− x
(

κnf
∂T
∂y

− qr

)

|y=0

κf (TW − T∞)
⇒ Nux Re− 1/2

x = −

(

A4 +
4
3
Rd

)

θ
′

(0) .  
Local Sherwood number : 

Shx =
x qm

DB (CW − C∞)
=

− x DB
∂C
∂y

|y=0

DB (CW − C∞)
⇒ Shx Re− 1/2

x = − ψ ′

(0) .    
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augmenting Tslip values lead to a decrease inθ(η). Augmentation in the 
thermal slip parameter as pointed out by Sabu et al. [58] reduces the 
sensitivity of the fluid flow within the boundary layer, which reduces the 
amount of heat produced and thereby reduces the temperature. The 
impact of nanoparticle shape on θ(η) is explained in Fig. 17. The 
blade-shaped silver nanoparticles contribute the most towards θ(η) and 
cylinder-shaped silver nanoparticles contribute the least towardsθ(η). 

The parallel effect of ϕ, QT , Rd & Tslip with the differing nano-
particle shapes on Nux Re− 1/2

x is elucidated in Figs. 18–21. It is seen that 
ϕ & Rd promotes Nux Re− 1/2

x whereas QT & Tslip demotes Nux Re− 1/2
x . A 

significant rise in the heat transfer rate is showcased by the blade-shaped 
silver nanoparticles followed by platelet, cylinder, and spherical-shaped 
nanoparticles, respectively. 

Variation in ψ(η) for differing A values is demonstrated in Fig. 22 
and it is perceived that A has a negative effect onψ(η). Fig. 23 eluci-
dates the effect of Le (Lewis number) onψ(η). ψ(η) decreases with 
augmenting Le values. Fig. 24 explains the negative impact of Kr 
(chemical reaction parameter) on ψ(η). This can be associated with the 
fact that augmenting Kr values as pointed out by Neethu et al. [4] eats 
up the nanoparticle which decreases ψ(η). Biologically, consumption 
of more nanoparticles is directly proportional to improved medication 
and hyperthermia (see Kaur et al. [68]). The impact of Cslip (solutal slip 
parameter) on ψ(η) is graphed in Fig. 25. It is seen that increasing Cslip 
values help in decreasingψ(η). The consequence of pertinent parame-
ters on Shx Re− 1/2

x is explained in Table 3. It is perceived that Kr & Le 
have a positive impact on Shx Re− 1/2

x and Cslip hurts Shx Re− 1/2
x . In 

addition, it is observed that the cylinder-shaped silver nanoparticles 
offer the highest Shx Re− 1/2

x value. 

5. Conclusion 

The influence of thermal and solutal slip on the stagnation point flow 
of blood-based silver nanomaterial in the presence of an induced mag-
netic field has been examined. The significance of spherical and non- 
spherical silver nanoparticles on the flow profiles and physical quanti-
ties has been analyzed. The key points drawn from the study are:  

• Nanofluid temperature and nanofluid concentration reduce with 
increasing values of thermal slip and concentration slip parameters, 
respectively.  

• Velocity and induced magnetic field profiles are least affected by 
spherical-shaped silver nanoparticles and highly affected by cylinder- 
shaped silver nanoparticles. Blade shaped silver nanoparticles 
contribute the most whereas cylinder-shaped silver nanoparticles 
contribute the least towards the nanofluid temperature.  

• Nanofluid temperature ascends with augmenting linear heat 
source, thermal radiation parameter, and volume fraction of silver 
nanoparticles.  

• Blade shaped silver nanoparticles offer an increased heat transfer 
rate over the other nanoparticle shapes and cylinder-shaped silver 
nanoparticles exhibit the highest mass transfer rate. A significant rise 
in the surface drag is brought out by the spherical-shaped silver 
nanoparticles followed by blade, platelet, and cylinder-shaped 
nanoparticles. 
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