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A B S T R A C T   

The current study presents a bioconvective model to investigate the dynamics of water conveying single-wall 
carbon nanotubes (SWCNTs) and magnetite nanoparticles on the stagnation point flow along a stretching 
sheet subject to chemical reaction, viscous dissipation, induced magnetic field, and stratification effects. With 
applications ranging from biomedical imaging, hyperthermia, targeted drug delivery, and cancer therapy, the 
present study provides a theoretical perspective that is beneficial in biomedical engineering. Relevant similarity 
formulas are effectuated in converting the governing equations into a system of ODEs and are further treated 
numerically using the Runge-Kutta-Fehlberg method with the shooting technique. Illustrations on the effect of 
temperature, microorganisms, concentration, and velocity profiles due to the varying parameter values are 
achieved with the aid of graphs. It is observed that augmenting volume fraction of single-wall carbon nanotube 
and magnetite nanoparticles exhibit a constructive effect on temperature profile, which helps in killing cancerous 
cells. Further, the simultaneous impact of effectual parameters on surface drag, heat transfer rate, mass transfer 
rate, and microorganism density number is studied using graphs. It is seen that augmenting chemical reaction 
parameter tends to elevate the mass transfer rate and the microorganism density number.   

1. Introduction 

The use of nanofluid in place of conventional fluid by Choi [1] 
marked a major breakthrough in the field of fluid dynamics. Since then, 
scientists have been working hard to further enhance heat transfer ca
pabilities. Studies dealing with various nanofluids can be seen in [2–5]. 
Mass and heat transfer plays a pivotal role in many aspects of engi
neering and medical field. Fluids constituting two or more nanoparticles 
are termed hybrid nanofluids. Mabood et al. [6] investigated the sig
nificance of melting heat transfer, magnetic field, and nonlinear radia
tion on hybrid nanoliquid flow over a stretched surface and observed 
that augmenting nanoparticle volume fraction of copper tends to in
crease the heat transfer rate. The consequence of the Newtonian heating 
process and nonlinear thermal radiation effect on water-based Cu −
Ti2O3 hybrid nanofluid flow over an elongating porous surface consid
ering Darcy-Forchheimer's model was analyszed by Yusuf et al. [7]. 
They noticed that the rate of entropy generation upsurged for ordinary 

nanofluid when compared with the hybrid nanofluid. Jakeer and Reddy 
[8] examined the impact of viscous dissipation, heat generation, and slip 
on the entropy generation in electro-magnetohydrodynamic (EMHD) Ag 
− Cu − H2O hybrid nanofluid. In addition, Zainal et al. [9] explored the 
unsteady EMHD stagnation point flow in a hybrid nanofluid concerning 
a stretching/shrinking sheet. A few more studies dealing with hybrid 
nanofluids can be seen in [10–12]. 

The magnetic field represents an important characteristic of hydro
magnetic problems. In some cases, the magnetic Reynolds number of the 
flow may not be realistic to be assumed small in magnitude; hence 
induced magnetic field (the additional magnetic field that gets induced 
on electrically conducting fluid in the presence of an external magnetic 
field.) is not negligible (see [13]). However, studies incorporating 
induced magnetic field effects are limited in number. Kumari et al. [14] 
numerically explored the impact of induced magnetic field on heat 
transfer over a lengthening sheet. Ali et al. [15] used the Keller-box 
method to numerically analyze the steady MHD boundary layer flow 
over an elongating sheet considering induced magnetic field and 

* Corresponding author. 
E-mail address: mabood1971@yahoo.com (F. Mabood).  

Contents lists available at ScienceDirect 

International Communications in Heat and Mass Transfer 

journal homepage: www.elsevier.com/locate/ichmt 

https://doi.org/10.1016/j.icheatmasstransfer.2021.105484    

mailto:mabood1971@yahoo.com
www.sciencedirect.com/science/journal/07351933
https://www.elsevier.com/locate/ichmt
https://doi.org/10.1016/j.icheatmasstransfer.2021.105484
https://doi.org/10.1016/j.icheatmasstransfer.2021.105484
https://doi.org/10.1016/j.icheatmasstransfer.2021.105484
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icheatmasstransfer.2021.105484&domain=pdf


International Communications in Heat and Mass Transfer 126 (2021) 105484

2

observed an increase in Nusselt number with magnetic parameter. Iqbal 
et al. [16] carried out investigations on entropy generation and induced 
magnetic field effects on Cu and TiO2 nanofluid using Keller box method 
and noted an improved thermal conductivity for water based TiO2 
nanofluid when compared with water based Cu nanofluid. 

The stagnation point corresponds to the point where the fluid's local 
velocity is zero. Nanofluid studies incorporating microorganisms is a 
developing field that has fascinated countless researchers due to its 
relevance in antibiotics, toxin removal, biofuel, targeted drug delivery 
and food digestion. Ali et al. [17] extended the work of Mahapatra and 
Gupta [18] to analyze the hydromagnetic stagnation point flow of an 
electrically conducting fluid over a lengthening sheet in the presence of 
an induced magnetic field. Later, Junoh et al. [19] extended the work of 
Ali et al. [17] by considering the stagnation point flow past a stretching/ 
shrinking sheet in a hybrid nanomaterial. 

CNT (carbon nanotube) is a graphene sheet rolled up into a tube 
having a nanoscale diameter. They are categorised into MWCNT (multi- 
wall carbon nanotubes) and SWCNT (single-wall carbon nanotubes) 
based on the number of used graphene sheets. CNT finds its use in device 
modelling, structural reinforcement, electromagnetic shields, automo
tive parts, energy storage, etc. CNTs are also administered in drug de
livery, delivery of genetic material, cancer diagnosis & treatment, 
thermal ablation, etc. Ijaz et al. [20] elucidated the impact of CNTs on 
stagnation flow over a stretched surface involving quartic chemical re
action and induced magnetic field. Iqbal et al. [21] conducted a nu
merical investigation to exploit the response of induced magnetic field 
on transfer quantities using MWCNT and SWCNT and noted a 
constructive effect for nanoparticle volume fraction on the induced 
magnetic field. Some neoteric studies concerning CNTs are given in 
[22–26]. The current work concentrates on SWCNTs and not on 
MWCNTs due to the amelioration it provides in the medical field and 
also due to their lower toxicity level (see [27]). 

The nanofluid studies involving microorganisms is an advancing 
field that has intrigued researchers due to its relevance in antibiotics, 

biofuel, toxin removal, targeted drug delivery and food digestion. 
Fluctuations in heat, mass and motile density profiles or the presence of 
different fluids trigger a formation of layers known as stratification. 
Bioconvection refers to the upward and downward movement of mi
croorganisms caused by the unstable density stratification of microor
ganisms at the upper surface. Mehmood and Iqbal [28] utilized the fifth- 
order Runge-Kutta method to examine the consequence of induced 
magnetic field on stagnation point flow of nanofluid involving gyrotactic 
microorganisms. Further, Al-Amri and Muthtamilselvan [29] explored 
the significance of thermal radiation, microorganisms, magnetic field, 
and activation energy on the two-dimensional stagnation point flow of 
an incompressible nanoliquid and noted an increase in the density of 
motile microorganisms for larger values of Peclet number. Ahmad et al. 
[30] numerically studied the consequence of magnetic field, double 
stratification, thermal radiation, activation energy, and heat generation 
on SWCNT and MWCNT nanoliquid flow past a wedge. A decline in the 
temperature profile is noted for augmenting thermal stratification 
parameter. Various articles exploring the effect of microorganisms and 
stratification are discussed in [31–34]. 

Motivated by previous studies, it is noted that the dynamics of water 
conveying single-wall carbon nanotubes and magnetite nanoparticles 
subject to induced magnetic field has not yet been studied. This paper 
attempts to fill this gap. Theranostics (a novel concept that involves the 
integration of diagnosis and therapy in a single platform) may be the 
specific applications of this research work (see [35–41]). The present 
work aims to:  

• Construct the bioconvective model to study the dynamics of water 
conveying single-wall carbon nanotubes and magnetite nano
particles considering induced magnetic field, thermal stratification, 
viscous dissipation, chemical reaction, solutal stratification, and 
motile density stratification effects. 

• Provide theoretical knowledge on the consequence of effectual pa
rameters on the flow profiles. 

Nomenclature 

a, c Dimensional constants 
Wc Maximum cell swimming speed 
Ec Eckert number 
N Microorganism concentration 
C Fluid concentration 
T Fluid temperature (K) 
NW Concentration of microorganism near the wall 
CW Nanoparticle concentration near the wall 
ΤW Wall fluid temperature 
Cfx Local drag coefficient 
Lb Bioconvection Lewis number 
kr Reaction rate constant (s− 1) 
b Chemotaxis constant 
DB Chemical molecular diffusivity (m2s− 1) 
Kr Chemical reaction parameter 
Pr Prandtl number 
Cp Specific heat 
Pe Peclet number 
Nnx Local motile density 
Shx Local Sherwood number 
Nux Local Nusselt number 
He Magnetic field at free stream 
Dm Microorganism diffusion coefficient (m2s− 1) 
x, y Cartesian coordinates (m) 
s1, s2, s3 Stratification parameters 
Le Lewis number 

u, v Velocity components (ms− 1) 
Н0 Uniform magnetic field at infinity (Am− 1) 
Τ∞ Ambient fluid temperature 
C∞ ambient nanoparticle concentration 
C0 Reference nanoparticle concentration 
Τ0 Reference temperature 
N0 Reference concentration of microorganism 
N∞ Ambient concentration of microorganism 

Greek symbols 
ϑ Kinematic viscosity (m2s− 1) 
ζ Dimensionless variable 
μ Dynamic viscosity 
λ Reciprocal of magnetic Prandtl number 
μe Magnetic permeability (kg m s− 2 A− 2) 
αm Magnetic diffusivity (m2s− 1) 
ρ Density of the fluid (kgm− 3) 
κ Thermal conductivity (Wm− 1K− 1) 
ϕ Nanoparticle volume fraction 
σ Electrical conductivity (kg− 1 m− 3 s3 A2) 
β Magnetic parameter 
α Thermal diffusivity (m2s− 1) 
Ω Microorganism concentration difference parameter 

Subscripts 
hnf Hybrid nanofluid 
nf Nanofluid 
f Conventional fluid  
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• Explore the significance of pertinent parameters on surface drag, 
heat transfer rate, mass transfer rate, and microorganism density 
number. 

2. Problem statement 

Two-dimensional steady stagnation point flow over a linearly elon
gating sheet (Fig. 1) is considered under the ensuing assumptions:  

(i) The expanding sheet is positioned along x axis and water-based 
Fe3O4 − SWCNT hybrid nanofluid containing microorganisms 
occupies the region y > 0.  

(ii) UW(x) = cx and Ue(x) = ax corresponds to the velocity of the 
lengthening sheet and the free stream, respectively.  

(iii) Induced magnetic field vector, H = (H1,H2) is considered with H1 
& H2 being the magnetic integrants along x and y direction, 
respectively.  

(iv) Chemical reaction and viscous dissipation effects are 
incorporated.  

(v) Thermal, solutal and motile density stratification effects are also 
considered. 

Governing equations takes the form (see [17,21,42]): 

∂u
∂x

+
∂v
∂y

= 0 (1)  

∂Н1

∂x
+

∂Н2

∂y
= 0 (2)  

u
∂u
∂x

+ v
∂u
∂y

−
μe

4πρhnf

(

Н1
∂Н1

∂x
+Н2

∂Н1

∂y

)

= Ue
dUe

dx
−

μeНe

4πρhnf

dНe

dx
+

(μhnf

ρhnf

)
∂2u
∂y2

(3)  

u
∂Н1

∂x
+ v

∂Н1

∂y
− Н1

∂u
∂x

− Н2
∂u
∂y

= αm
∂2Н1

∂y2 (4)  

u
∂Τ
∂x

+ v
∂Τ
∂y

= αhnf
∂2Τ
∂y2 +

μhnf(
ρCp
)

hnf

(
∂u
∂y

)2

(5)  

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 − kr(C − C∞) (6)  

u
∂N
∂x

+ v
∂N
∂y

+
bWc

CW − C0

(
∂
∂y

(

N
∂C
∂y

))

= Dm
∂2N
∂y2 (7)  

with 

u = UW(x) = cx, v = 0,
∂H1

∂y
= H2 = 0,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

at y = 0  

T = TW = Τ0 + δ1x,C = CW = C0 + ϵ1x,N = NW = N0 + ξ1x  

u→Ue(x) = ax,Н1→Нe(x) = Н0x,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

as y→∞  

Τ→Τ∞ = Τ0 + δ2x,C→C∞ = C0 + ϵ2x,N→N∞ = N0 + ξ2x  

where αm = 1
4πμeσhnf 

represents the magnetic diffusivity. 
Introducing the following similarity transformations (see 

[17,21,42]): 

u = cxf ′

(ζ), v = −
̅̅̅̅̅̅̅
cϑf

√
f (ζ),Н1 = Н0xg′

(ζ),Н2 = − Н0

̅̅̅̅̅
ϑf

c

√

g(ζ)

ζ = y
̅̅̅̅̅c
ϑf

√

, θ(ζ) =
Τ − Τ∞

ΤW − Τ0
,ψ(ζ) = C − C∞

CW − C0
, χ(ζ) = N − N∞

NW − N0  

into (1) − (7), we get: 

f ′ ′′ − A1 A2

{

(f
′

)
2
− f f ′ ′ −

β
A2

{
(g

′

)
2
− g g′ ′ − 1

}
− A2

}

= 0 (8)  

g′ ′′ −
A5

λ
{ g f

′ ′ − f g′ ′ } = 0 (9) 

Fig. 1. Figurative representation.  
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θ
′ ′ +

A3 Pr
A4

f θ
′

+
Ec Pr
A1 A4

(f
′ ′)

2
= 0 (10)  

ψ ′ ′ +Le f ψ ′

− Kr Le ψ = 0 (11)  

χ ′ ′ +Lb f χ ′

− Pe { (χ +Ω) ψ ′ ′ + χ ′ ψ ′

} = 0 (12)  

subject to the boundary conditions: 

f (ζ) = 0, f ′

(ζ) = 1, g(ζ) = 0, g
′ ′(ζ) = 0,

⎫
⎬

⎭
when ζ = 0  

θ(ζ) = 1 − S1,ψ(ζ) = 1 − S2, χ(ζ) = 1 − S3  

f ′

(ζ)→A, g
′

(ζ)→1, θ(ζ)→0,ψ(ζ)→0, χ(ζ)→0

⎫
⎬

⎭
as ζ→∞  

where the dimensionless parameters are: 

A =
a
c
, β =

μe

4πρf

(
H0

c

)2

, λ =
1

4πμeσf ϑf
,Pr =

(
μCp

)

f

kf
=

ϑf

αf  

Le =
ϑf

DB
,Ec =

(cx)2

(
Cp
)

f (TW − T0)
, Lb =

ϑf

Dm
,Pe =

bWc

Dm  

Ω  

= N∞
NW − N0

, Kr = kr
c , S1 = δ2

δ1
, S2 = ϵ2

ϵ1
, S3 =

ξ2
ξ1

The nanofluid models 
incorporated are: 

Physical quantities in the non-dimensional form are given by (see 
[21,42,44]): 

Local drag coefficient: Cfx = τω
ρf (UW)

2 =

μhnf
∂u
∂y

⃒
⃒
⃒
⃒

y=0

ρf (UW)
2 ⇒Cfx Re1/2

x =
f ′ ′ (0)
A1 

Local Nusselt number: Nux =
x qω

κf (TW − T0)
=

− x κhnf
∂T
∂y

⃒
⃒
⃒
⃒

y=0
κf (TW − T0)

⇒Nux Re− 1/2
x =

− A4 θ
′

(0)

Local Sherwood number: Shx =
x qm

DB (CW − C0)
=

− x DB
∂C
∂y

⃒
⃒
⃒
⃒

y=0
DB (CW − C0)

⇒Shx Re− 1/2
x =

− ψ ′

(0)

Local microorganism density number: Nnx =
x qn

Dm (NW − N0)
=

− x Dm
∂N
∂y

⃒
⃒
⃒
⃒

y=0
Dm (NW − N0)

⇒Nnx Re− 1/2
x = − χ ′

(0)where Rex = UW x
ϑf 

is the local Reynold's 
number. 

Table 1 
Comparison of drag coefficient ( Cfx Rex

1/2 ) with [21,46,47] for different A 
values when ϕFe3O4 

= ϕSWCNT = β = λ = 0  

A Cfx Rex
1/2 

Iqbal et al. [21] Hayat et al. [46] Hayat et al. [47] Present Results 

0.1 − 0.969386 − 0.96939 − 0.96937 − 0.969386 
0.2 − 0.918107 − 0.91811 − 0.91813 − 0.918107 
0.5 − 0.667263 − 0.66726 − 0.66723 − 0.667264 
0.7 − 0.433475 − 0.43346 − 0.43345 − 0.433476 
0.8 − 0.299388 − 0.29929 − 0.29921 − 0.299389 
0.9 − 0.154716 − 0.15458 − 0.1545471 − 0.154717 
1 0 0 0 0.000000  

Hybrid Nanofluid Model (see [11,43–45]) μhnf

μf
=

1
(
1 − ϕFe3O4

)2.5
(1 − ϕSWCNT)

2.5
=

1
A1    

ρhnf

ρf
= (1 − ϕSWCNT)

{
(
1 − ϕFe3O4

)
+

ρFe3O4

ρf
ϕFe3O4

}

+
ρSWCNT

ρf
ϕSWCNT = A2    

(
ρCp
)

hnf
(
ρCp
)

f
= (1 − ϕSWCNT)

{
(
1 − ϕFe3O4

)
+

(
ρCp
)

Fe3O4(
ρCp
)

f
ϕFe3O4

}

+

(
ρCp
)

SWCNT(
ρCp
)

f
ϕSWCNT = A3    

khnf

kbf
=

1 − ϕSWCNT + 2ϕSWCNT

(
kSWCNT

kSWCNT − kbf

)

ln
(

kSWCNT + kbf

2kbf

)

1 − ϕSWCNT + 2ϕSWCNT

(
kbf

kSWCNT − kbf

)

ln
(

kSWCNT + kbf

2kbf

)

kbf

kf
=

kFe3O4 + 2kf − 2ϕFe3O4

(
kf − kFe3O4

)

kFe3O4 + 2kf + ϕFe3O4

(
kf − kFe3O4

)

σhnf

σf
= 1 +

3
{

ϕFe3O4
σFe3O4 + ϕSWCNTσSWCNT

σf
−
(
ϕFe3O4

+ ϕSWCNT
)
}

2 +

{
ϕFe3O4

σFe3O4 + ϕSWCNTσSWCNT
(
ϕFe3O4

+ ϕSWCNT
)
σf

}

−

{
ϕFe3O4

σFe3O4 + ϕSWCNTσSWCNT

σf
−
(
ϕFe3O4

+ ϕSWCNT
)
}

A4 =
khnf

kf  
A5 =

σhnf

σf     

Nanofluid Model (see [21,44]) Effective Dynamic Viscosity : μnf

μf
=

1
(
1 − ϕFe3O4

)2.5    

Effective Density : ρnf

ρf
=
(
1 − ϕFe3O4

)
+ ϕFe3O4

(ρFe3O4

ρf

)

Effective Specific Heat : 
(
ρCp
)

nf
(
ρCp
)

f
=
(
1 − ϕFe3O4

)
+ ϕFe3O4

((
ρCp
)

Fe3O4(
ρCp
)

f

)

Effective Thermal Conductivity : κnf

κf
=

kFe3O4 + 2kf − 2ϕFe3O4

(
kf − kFe3O4

)

kFe3O4 + 2kf + ϕFe3O4

(
kf − kFe3O4

)

Effective Electrical Conductivity : 
σnf

σf
= 1 +

3
(

σFe3O4

σf
− 1
)

ϕFe3O4

(
σFe3O4

σf
+ 2
)

−

(
σFe3O4

σf
− 1
)

ϕFe3O4    
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3. Numerical scheme & validation 

Eqs. (8) to (12) together with the boundary conditions shows a 
nonlinear nature and it seems to be difficult to find the closed-form or 
exact solution for the considered problem. Hence, the approximate so
lutions are computed numerically employing the Runge-Kutta-Fehlberg 
method cum shooting technique. This is accomplished by initially 
assuming: 

Υ1 = f ,Υ2 = f ′

,Υ3 = f ′ ′,Υ3
′

= f ′ ′′ ,Υ4 = g,Υ5 = g′

,Υ6 = g′ ′,Υ6
′

= g′ ′′ ,Υ7

= θ  

Υ8 = θ
′

,Υ8
′

= θ
′ ′,Υ9 = ψ,Υ10 = ψ ′

,Υ10
′

= ψ ′ ′,Υ11 = χ,Υ12 = χ ′

,Υ12
′

= χ ′ ′

The reduced system of first-order ODE is given by: 

Υ1
′

= Υ2  

Υ2
′

= Υ3  

Υ3
′

= A1 A2

{

(Υ2)
2
− Υ1 Υ3 −

β
A2

{
(Υ5)

2
− Υ4 Υ6 − 1

}
− A2

}

Υ4
′

= Υ5  

Υ5
′

= Υ6  

Υ6
′

=
A5

λ
{ Υ4 Υ3 − Υ1 Υ6 }

Υ7
′

= Υ8  

Υ8
′

= −

{
A3 Pr

A4
Υ1 Υ8 +

Ec Pr
A1 A4

(Υ3)
2
}

Υ9
′

= Υ10  

Υ10
′

= Kr Le Υ9 − Le Υ1 Υ10 

Table 2 
Thermophysical properties [2,21,44] of water, Fe3O4 and SWCNT  

Property Water (conventional 
fluid) 

Fe3O4 (nanoparticle 
1) 

SWCNT (nanoparticle 
2) 

ρ 997 5180 2600 
Cp 4179 670 425 
κ 0.613 9.7 6600 
σ 0.05 25,000 106  

g'
(
)

0 2 4 6 80.7

0.8

0.9

1

1.1

1.2

1.3
Fe3O4-SWCNT
Fe3O4

A=0.7, 1.4, 2

(b)

Pr =6.2, = =Kr=Pe=0.5
Ec= =Le=Lb=0.3, S1=S2=S3=0.2
(SWCNT)= (Fe3O4) =0.1

f' (
)

0 1 2 3 4 5

1

1.5

2

2.5

Fe3O4-SWCNT
Fe3O4

A=0.7

(a)

Pr =6.2, = =Kr=Pe=0.5
Ec= =Le=Lb=0.3, S1=S2=S3=0.2
(SWCNT)= (Fe3O4) =0.1

1.4

2.0

Fig. 2. Variation of A on f′(ζ) & g′(ζ).  

f' (
)

0 1 2 3 41

1.05

1.1

1.15

1.2

Fe3O4-SWCNT
Fe3O4

= 0
, 0.
4, 0
.8

(b)

Pr =6.2,A=1.2, =Kr=Pe=0.5
Ec= =Le=Lb=0.3, S1=S2=S3=0.2
(SWCNT)= (Fe3O4) =0.1

( A > 1 )

f' (
)

0 2 4 6 8 10
0.8

0.85

0.9

0.95

1

Fe3O4-SWCNT
Fe3O4

= 0, 0.4, 0.8

(a)

Pr =6.2,A=0.8, =Kr=Pe=0.5
Ec= =Le=Lb=0.3, S1=S2=S3=0.2
(SWCNT)= (Fe3O4) =0.1

( A < 1 )

Fig. 3. Variation of β on f′(ζ).  
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g'
(
)

0 1 2 3 40.9

0.92

0.94

0.96

0.98

1

Fe3O4-SWCNT
Fe3O4

= 0, 0.4, 0.8

(b)

Pr =6.2, A=1.2, =Kr=Pe=0.5
Ec= =Le=Lb=0.3, S1=S2=S3=0.2
(SWCNT) = (Fe3O4)=0.1

( A > 1 )

g'
(
)

0 2 4 6 8 10
1

1.05

1.1

1.15

1.2

Fe3O4-SWCNT
Fe3O4

= 0, 0.4, 0.8

(a)
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Υ11
′

= Υ12  

Υ12
′

= Pe { (Υ11 +Ω) Υ10
′

+Υ12 Υ10 } − Lb Υ1 Υ12  

with 

Υ1(0) = 0,Υ2(0) = 1,Υ3(0) = Γ1,Υ4(0) = 0  

Υ5(0) = Γ2,Υ6(0) = 0,Υ7(0) = 1 − S1,Υ8(0) = Γ3  

Υ9(0) = 1 − S2,Υ10(0) = Γ4,Υ11(0) = 1 − S3,Υ12(0) = Γ5 

where Γ1, Γ2, Γ3, Γ4 & Γ5 are estimated using shooting technique with 
a suitable initial guess.Accuracy of the code and the validation of the 
current problem have been accounted for through a restrictive com
parison of the present work with prior published works [21,46,47] 
(showcased in Table 1) and a commendable agreement is noted. 

In proposed work, to simulate the flow for various values of pa
rameters we have used MAPLE-17 software. The effects of the emerging 
parameters on the dimensionless velocity, temperature, skin friction, 
Nusselt number, mass transfer rate and microorganism density number 
are studied. The step size is taken Δζ = 0.01and accuracy is up to the fifth 
decimal place as the criterion of convergence. We assumed a suitable 
finite value for the far field boundary condition i.e.ζ → ∞, say ζ∞. The 
iteration is done with the convergence criterion of 10− 6 in all cases. 

4. Results & discussion 

The consequence of pertinent parameters on the physical quantities, 
microbial concentration (χ(ζ)), velocity (f′(ζ)), concentration (ψ(ζ)), 
temperature (θ(ζ)), and induced magnetic field (g′(ζ)) profiles are 
depicted through Figs. 2 − 15. Studies have been carried out for water- 
based Fe3O4 − SWCNT hybrid nanofluid & Fe3O4 nanofluid with Prandtl 
number (Pr) and infinity fixed at 6.2 and 10, respectively. Thermo
physical properties of the conventional fluid (water), Fe3O4 (nano
particle 1), and SWCNT (nanoparticle 2) are showcased in Table 2. 

Fig. 2(a) & (b) illustrate the impact of stretching parameter (A) on f′
(ζ) & g′(ζ), respectively and it is perceived that augmenting A values 
produces a constructive effect on f′(ζ) and destructive effect on g′(ζ). 
Fig. 3 depicts the variations in f′(ζ) due to β (magnetic parameter). It is 
observed that f′(ζ) increases for augmenting β values when A < 1 and a 
reversed behaviour is observed for f′(ζ) when A > 1. 

Fig. 4 bespeaks the deviation in g′(ζ) concerning β. An increase in g′
(ζ) for A < 1 and a decrease g′(ζ) for A > 1 is noted for elevating β values. 
Fig. 5 explains the mixed effect of λ (reciprocal of magnetic Prandtl 
number) on g′(ζ). Initially, elevating λ values decays g′(ζ) and after
wards, a reversed trend is observed when A < 1. A similar but inversed 
impact is perceived when A > 1. 

Figs. 6 & 7 elucidate the simultaneous effect of β, ϕFe3O4 & ϕSWCNT on 
Cfx Rex

1/2 (drag coefficient). It can be interpreted that Cfx Rex
1/2 improves 

with β and deteriorates with ϕFe3O4 & ϕSWCNT when A < 1. When A > 1, 
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Cfx Rex
1/2 increases with ϕFe3O4 & ϕSWCNT and decreases with β. Biologi

cally, a higher drag coefficient implies increased interaction between the 
fluid and the surface, which is beneficial in targeted drug delivery and 
biomedical imaging (see [38,48]). 

Variation in θ(ζ) due to ϕFe3O4 (volume fraction of nanoparticle 1) and 
ϕSWCNT (volume fraction of nanoparticle 2) are illustrated in Figs. 8(a) & 
8(b), respectively. It is observed that θ(ζ) ascends with augmenting 
ϕFe3O4 & ϕSWCNT values. Physically, this increase in temperature can be 
related to the improvement in the thermal conductivity of the nano
liquid caused by larger nanoparticle occupancy. The constructive effect 
of Ec (Eckert number) is illustrated in Fig. 9(b). Physically, it is associ
ated with the generation of friction forces between the fluid particles 
which increases the temperature profile. In addition, the analysis on the 
significance of ϕFe3O4, ϕSWCNT & Ec on the temperature profile unveils 
that the nanoliquid can be used for killing tumors or cancerous cells (see 
[49]). 

Fig. 9(a) depicts a descending nature of θ(ζ) for S1 (thermal strati
fication parameter). Physically, the decrease in the nanoliquid temper
ature is due to the decrease in the temperature difference between the 
surface and away from the surface caused by an increase in S1. The 
simultaneous effect of Ec, S1, ϕFe3O4 & ϕSWCNT on Nux Rex

− 1/2 (heat 
transfer rate) has been studied with the aid of Figs. 10 & 11. It can be 
said that for A = 0.8, Nux Rex

− 1/2 decreases with respect to S1, Ec & 
ϕSWCNT and remains almost unchanged with respect to ϕFe3O4. 

The stability to the problem involves finding the value range of the 
input parameter to keep the optimal solution unchanged, in this paper 
we have used various values of parameters where the solution is stable 
as mentioned in each figure. 

Fig. 12 explains the consequence of Kr (chemical reaction param
eter), Le (Lewis number) and S2 (solutal stratification parameter) on 
ψ(ζ). A decreasing behaviour on the concentration profile is observed for 
augmenting Kr, Le & S2 values. Physically, an increase in S2 descends the 
concentration profile due to the decrease in the volumetric fraction 
between the surface and reference nanoparticles. Moreover, an increase 
in Kr consumes more nanoparticles and hence concentration decreases. 
Biologically, consumption of more nanoparticles is directly proportional 
to improved medication and biomedical imaging (see [50]). Fig. 13 
discusses the impact of Pe (Peclet number) and S3 (motile density 
stratification parameter) on χ(ζ). It is observed that the augmenting 
effectual parameter values tend to decrease χ(ζ). Physically, an 
augmentation in S3 decreases the concentration difference of microor
ganisms between the surface and away from the surface and hence the 
microbial concentration decreases. 

Figs. 14(a) & 15(a) bespeak the simultaneous variation of Le, Kr & S2 
on Shx Rex

− 1/2 (mass transfer rate) and Figs. 14(b) & 15(b) depict the 

simultaneous variation of Lb (bioconvection Lewis number), Kr & S3 on 
Nnx Rex

− 1/2 (microorganism density number). It can be easily observed 
that Shx Rex

− 1/2 increases with Kr & Le and decreases due to S2. 
Furthermore, it is also noted that Nnx Rex

− 1/2 increases with Kr & Lb and 
decreases due to S3. 

5. Conclusion 

The dynamics of water conveying single-wall carbon nanotube and 
magnetite nanoparticles on the stagnation point flow along a stretching 
sheet subject to chemical reaction, viscous dissipation, induced mag
netic field, and stratification effects have been numerically explored 
using the Runge-Kutta-Fehlberg method combined with the shooting 
technique. The key points noted from the study are:  

• The augmenting volume fraction of single-wall carbon nanotube and 
magnetite nanoparticles raises the nanofluid temperature. Further, 
augmenting the Eckert number intensifies the nanofluid tempera
ture. Biologically, the increase in the nanofluid temperature caused 
by the pertinent parameters is beneficial in killing tumors and 
cancerous cells. 

• The velocity profile is directly proportional to the magnetic param
eter when A < 1 and inversely proportional to the magnetic 
parameter when A > 1.  

• The maximum drag coefficient (when A = 0.8) is experienced for 
higher values of the magnetic parameter and lower volume fraction 
of single-wall carbon nanotube and magnetite nanoparticles. How
ever, the maximum drag coefficient (when A = 1.2) is experienced 
for lower values of the magnetic parameter and higher volume 
fraction of single-wall carbon nanotube and magnetite nanoparticles. 
Biologically, a higher drag coefficient implies increased interaction 
between the fluid and the surface, which is beneficial in targeted 
drug delivery and biomedical imaging. 

• The mass transfer rate is a decreasing function of the solutal strati
fication parameter and an increasing function of the chemical reac
tion parameter.  

• Augmenting chemical reaction parameter has a destructive effect on 
concentration profile that contributes towards improved medication 
and biomedical imaging.  

• The microorganism density number is directly proportional to the 
chemical reaction parameter and is inversely proportional to the 
motile density stratification parameter.  

• The maximum heat transfer rate is observed for smaller values of 
thermal stratification parameter, Eckert number, and nanoparticle 
volume fraction of single-wall carbon nanotube. 
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