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Abstract
We study the radial distribution of pressure, density, temperature and flow velocity fields at
different times in a two dimensional hard sphere gas that is initially at rest and disturbed
by injecting kinetic energy in a localized region through large scale event driven molecular
dynamics simulations. For large times, the growth of these distributions are scale invariant.
The hydrodynamic description of the problem, obtained from the continuity equations for
the three conserved quantities—mass, momentum, and energy—is identical to those used to
describe the hydrodynamic regime of a blast wave propagating through a medium at rest,
following an intense explosion, a classic problem in gas dynamics. Earlier work showed that
the results from simulations matched well with the predictions from hydrodynamics in two
dimensions, but did not match well in three dimensions. To resolve this contradiction, we
perform large scale simulations in two dimensions, and show that like in three dimensions,
hydrodynamics does not describe the simulation data well. To account for this discrepancy,
we check in our simulations the different assumptions of the hydrodynamic approach like
local equilibrium, existence of an equation of state, neglect of heat conduction and viscosity.
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1 Introduction

The study of the propagation of a blast wave in a gas caused by the input of a large amount
of energy in a localised region of space, is one of the classic problems in gas dynamics
[1,2]. Initially, energy is transported from the location of input to the outside primarily
in the form of radiation. As the gas cools with time, radiation becomes less important,
and the transport of energy is dominated by a shock wave, in which the perturbed matter
moves faster than the speed of sound. In this regime, the expansion becomes self similar
in time. The radius of the shock front, from dimensional arguments, increases as R(t) ∼
t2/d+2 where d is the spatial dimension [3–7]. The spatial and temporal dependence of the
different thermodynamic quantities like density, pressure, temperature and flow velocity can
be obtained using hydrodynamics by studying the continuity equations for conservation of
density, momentum and energy. The exact solution for these in three dimensions, when heat
conduction and viscous effects are ignored, were found by Taylor, von Neumann and Sedov
[3–7], and we will refer to this theory as the TvNS theory.

Examples of physical systems where the hydrodynamic regime of a blast wave has been
studied include the Trinity nuclear explosion of 1945 [3,4], intermediate time evolution of
supernova remnants [6,8–12], and laser-driven blast waves in gas jets [13], plasma [14], or
in cluster media [15]. These studies have focused on verifying the scaling law for the growth
of the shock front. Further generalisations and applications of the TvNS theory include the
case when there is a continuous input of energy in a localised region [16,17], inclusion of
the effects of heat conduction [18–20] and viscous effects [21–24]. The TvNS theory has
also been generalised to examples where the number of conserved quantities are fewer in
number. For example, in granular systems, energy is no longer conserved in collisions, while
momentum and mass are. There are many situations when the response of a dilute granular
system to localized perturbations, either as an impact or continuous in time, is of interest.
Examples include crater formation in a granular bed following an impact of an object or a
continuous jet [25–27], shock propagation in a granular medium following a sudden impact
[28–30], viscous fingering by the continuous injection of energy [31–35], shock propagation
in continuously driven granular media [36], etc. More recently, the TvNS theory has been
generalized to include dissipative interactions in order to describe the spatial variation of
density, temperature, etc., in these systems [37,38].

While the hydrodynamic equations and their modifications have been studied in great
detail, it has only been more recently that the theory been tested in simulations of particle
based models. The simplest model is the hard sphere gas in which particles move ballistically
until they undergo momentum and energy conserving collisions. If the particles are initially
at rest and energy is imparted to a few particles in a localised region, then a shock wave
is set up. After initial transients, a self similar regime is reached. Since the only conserved
quantities in thismodel are density,momentum, and energy, as in theTvNS theory, it is a direct
realisation of the TvNS theory. The power law growth for the shock front has been verified
in simulations of such systems both in two [29,39] and three dimensions [29]. For the spatial
variation of density, pressure, temperature and flow velocity, the results are not so clear. In
two dimensions, for low to medium densities, it was found that simulations reproduce well
the TvNS solution for the radial variation of density, flow velocity and temperature fields,
except for a small difference in the discontinuities at the shock front, and a slight discrepancy
near the shock center [38]. However, in three dimensions, from large scale simulations, we
showed recently [40] that the TvNS theory fails to describe the simulation data at most spatial
locations, ranging from the shock center to the shock front. In addition, we tested several
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assumptions of the TvNS theorywithin the simulations. It was shown that a key assumption of
an existence of an equation of state (EOS) relating the local pressure to the local density and
temperature, holds good in simulations. However, while thermal energy is equipartitioned in
the different directions, local equilibrium fails to hold. In one dimension, recent simulations
show that the TvNS results are able to explain the numerical data well [41].

Thus, there is a clear discrepancy between the conclusions drawn from the simulations
performed in one, two and three dimensions. Is this because dimension plays a role in the
validity of the TvNS theory? Are the assumptions of TvNS theory like local equilibrium, that
is invalid in three dimensions, valid in two dimensions? The aim of the paper is to answer
these two questions.

In this paper, we perform large scale event driven simulations of shock propagation in the
hard sphere gas in two dimensions to test the predictions of the TvNS theory by repeating
the analysis that we did for the three dimensional case. In contradiction to the earlier results
for two dimensions, we show unambiguously that the simulation data for distances ranging
from the shock center to the shock front do not agree with the predictions of the TvNS theory
for the hard sphere gas. We also test the key assumptions of the TvNS theory. Like in three
dimensions, we find that, there is an EOS relating pressure to density and temperature. This
EOS state is the same as that for the hard sphere gas in equilibrium at the local pressure
and temperature. We also find that, as expected for a system in local equilibrium, energy is
equipartitioned equally among the different translational degrees of freedom. However, the
distribution of the velocity fluctuations, in regions between the shock center and shock front,
is found to have non-gaussian tails. In particular, it is asymmetric with non-zero skewness.
These features are also similar as to what was observed in three dimensions.

The remainder of the paper is organized as follows. In Sect. 2, we describe the model and
give details of the simulations. Section 3 describes the hydrodynamic theory for the shock
propagating in a two dimensional hard sphere gas, obtained bymodifying the TvNS theory to
account for steric effects. In Sect. 4 we compare the TvNS predictions for the radial variation
of the density, velocity, pressure and temperature with the results obtained from large-scale
simulations of the hard sphere gas. We test the different assumptions of the TvNS theory
within simulations in Sect. 5. Section 6 contains a summary and discussions.

2 Model

Consider a collection of stationary hard spheres that are initially uniformly distributed in
space. The mass and diameter are set to one. The system is perturbed by an isotropic impulse
at the origin. To model an isotropic impulse in the simulations, we choose four particles near
the origin and assign to them velocities of magnitude 1 along the ±x and ±y directions. The
particles move ballistically and transfer kinetic energy to other particles through energy and
momentum conserving collisions. If u1 and u2 are the pre-collision velocities of two particles
1 and 2, then the corresponding post-collision velocities v1 and v2, are given by

v1 = u1 − [n̂ · (u1 − u2)]n̂,

v2 = u2 − [n̂ · (u2 − u1)]n̂, (1)

where n̂ is the unit vector along the line joining the centers of particles 1 and 2. The only
control parameter in the problem is the initial number density ρ0.

We simulate the system using event driven molecular dynamics simulations [42]. The
initial perturbation creates a disturbance, made up of moving particles, that propagates radi-
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Fig. 1 Moving (red) and stationary (blue) particles at times a t = 1 × 105, b t = 1.5 × 105, c t = 2.0 × 105

and d t = 2.5× 105, after the initial injection of four energetic particles at the center. At time t = 2.5× 105,
there are 919407 moving particles. The data are for the ambient number density ρ0 = 0.15 (Color figure
online)

ally outwards. Snapshots of the system at different times are shown in Fig. 1. The moving
particles are separated from the stationary particles by a shock front.

The radius of this shock front R(t) has been shown earlier to increase as t1/2 in event driven
simulations, consistent with dimensional analysis [29,39]. To benchmark our simulations as
well as to estimate the relaxation time for initial transients, we show in Fig. 2 the temporal
variation of both R(t) and the total number of moving particles N (t). We define R(t) as
the radius of gyration of the moving particles at a given time t . In Fig. 2, at large times, we
find R(t) ∼ √

t , and N (t) increases as t , consistent with N (t) ∼ R(t)2. However, it can be
seen that there are strong initial transients before the asymptotic behaviour is attained. For
studying the scaling behaviour of the different thermodynamic quantities, we choose times
that are larger than this crossover time.

In our simulations, we measure the radial variation of pressure, density, temperature and
flow velocity by averaging the simulation data over 150 different histories. We simulate
systems with two different number densities ρ0 = 0.15, 0.382, both of which are much
smaller than the random closed packing density. To ensure that there are no boundary effects,
the number of particles and time of simulation are chosen such that the moving particles
are far from the boundary. The local temperature is measured from the velocity fluctuations,
obtained by subtracting out themean radial velocity from the instantaneous velocity. The local
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Fig. 2 Simulation results for the temporal variation of a the radius of the shock R(t) and b the number of
moving particles N (t). The solid lines are power laws a

√
t and b t . The data are for the ambient number

density ρ0 = 0.15

pressure is measured from the local collision rate. For the hard sphere gas in two dimensions,
pressure is given by [43]

p = ρT − ρ

2Nδt

∑

collisions

bi j , (2)

where bi j = ri j · vi j , where ri j and vi j respectively are the relative positions and velocities
of the particles i and j undergoing collisions, δt is the time duration of measurement, and N
is the mean number of particles in the radial bin where pressure is being computed.

3 Hydrodynamics

In this section, we describe the TvNS theory for the hydrodynamical description of shock
propagation following an intense, isotropic, localized perutrbation, modified to include steric
effects due to the finite sizes of the spheres. Initially, the gas that is at rest with number density
ρ0, is perturbed by adding energy E0 at the center. The mass, momentum, and energy are
conserved locally so that the fluid flow is described by the corresponding continuity equations.
In the TvNS theory, it is assumed that heat conduction and viscous effects may be ignored
and that local equilibrium is achieved. These assumptions imply that the flow is isentropic.
Thus, the conservation law for energy can be replaced by that for entropy. Since the flow is
isotropic, the different thermodynamic quantities cannot depend on the angle. Thus, in radial
coordinates, the continuity equations are [44]

∂tρ + ∂r (ρv) + r−1ρv = 0, (3)

∂tv + v∂rv + ρ−1∂r p = 0, (4)

∂t s + v∂r s = 0, (5)

where ρ is the density, v is the mean radial velocity, p is the pressure and s is the entropy.
The number of independent parameters are reduced by assuming local equilibrium. This

implies that the local pressure is related to the local density and temperature through an
EOS. Here, temperature is a measure of the local velocity fluctuations about the mean flow
velocity. In the original TvNS theory, the EOS was chosen to be that of the ideal gas, making

123



3 Page 6 of 16 J. P. Joy, R. Rajesh

Table 1 The values of the virial
coefficients Bn for the hard
sphere gas in two dimensions.
The data are taken from Ref. [45]

n Bn

2 π
2

3 ( 43 −
√
3

π )B2
2

4
[
2 − 9

√
3

2π + 10
π2

]
B3
2

5 0.33355604B4
2

6 0.1988425B5
2

7 0.11486728B6
2

8 0.0649930B7
2

9 0.0362193B8
2

10 0.0199537B9
2

the resulting equations solvable. For the hard sphere gas, steric effects are important. To
include these effects, more realistic virial EOS was used in three dimensions [40], and the
Henderson EOS was used in two dimensions [38]. We now describe the hydrodynamics with
virial EOS in two dimensions, and discuss the role of truncation of the virial expansion.

The EOS of a gas has the virial expansion

p

kBTρ
= 1 +

∞∑

n=2

Bnρ
n−1, (6)

where T is the temperature, kB is the Boltzmann constant, and Bn are the virial coefficients.
The entropy as a virial expansion is then given by

s = NkB

[
3

2
− ln(Λ2ρ) −

∞∑

n=2

ρn−1

n − 1

(
Bn + T

dBn

dT

)]
, (7)

whereΛ = h/
√
2πmkBT is the thermal wavelength. For hard spheres, the virial coefficients

are independent of temperature, i.e., dBn/dT = 0. The virial coefficients Bn for the hard
sphere gas in two dimensions are known analytically for up to n = 4 and through Monte
Carlo simulations up to n = 10 [45]. These are tabulated in Table 1.

Substituting the virial expansions for pressure and entropy in Eqs. (3)–(5), we obtain

∂tρ + ∂r (ρv) + r−1ρv = 0, (8)

(∂t + v∂r )v + kBT

[
1 +

∞∑

n=2

nBnρ
n−1

]
∂r ln ρ + kBT

[
1 +

∞∑

n=2

Bnρ
n−1

]
∂r ln T = 0,

(9)

(∂t + v∂r ) ln T −
[
1+

∞∑

n=2

Bnρ
n−1

]
(∂t + v∂r ) ln ρ = 0. (10)

Non-dimensionalising the different thermodynamic quantities converts Eqs. (8)–(10) from
partial to ordinary differential equations. From dimensional analysis [2]

p = ρ0r2

t2
P(ξ),

ρ = ρ0R(ξ),
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v = r

t
V (ξ),

ε = kBT

m0
= r2

t2
E(ξ), (11)

where

ξ = r

(
E0t2

ρ0

)−1/4

, (12)

is the non-dimensionalised length, E0 is the initial energy that is input at the spatial location
r = 0, ρ0 is the ambient mass density, T is the local temperature, kB is Boltzmann constant,
m0 is the mass of a particle, and P , R, V , and E , are scaling functions. ε is the thermal energy
per unit mass. Among the four scaling functions, three of them are related through the virial
EOS [see Eq. (6)] as

P(ξ) = E(ξ)R(ξ)

[
1 +

∞∑

n=2

Bnρ
n−1
0 R(ξ)n−1

]
. (13)

Equations (8)–(10) may be rewritten in terms of the scaling functions as

(
V − 1

2

)
Rξ

dV

dξ
+ ξ

d

dξ

[
ER

(
1 +

∞∑

n=2

Bnρ
n−1
0 Rn−1

)]
− RV + RV 2

+ 2RE

[
1 +

∞∑

n=2

Bnρ
n−1
0 Rn−1

]
= 0, (14)

(
V − 1

2

)
ξ
dR

dξ
+ ξ R

dV

dξ
+ 2RV = 0, (15)

−
(
1 +

∞∑

n=2

Bnρ
n−1
0 Rn−1

)(
V − 1

2

)
ξ

R

dR

dξ
+

(
V − 1

2

)
ξ

E

dE

dξ
+ 2(V − 1) = 0. (16)

The various thermodynamic quantities are discontinuous across the shock front. These
discontinuities are determined based on the flow of conserved quantities across the shock
front and given by the Rankine–Hugoniot boundary conditions [44]. The Rankine–Hugoniot
boundary conditions at the shock front ξ f in terms of dimensionless variables are

1

R(ξ f )

[
1 + 2

1 + ∑∞
n=2 Bnρ

n−1
0 R(ξ f )n−1

]
= 1,

V (ξ f ) = 1

R(ξ f )[1 + ∑∞
n=2 Bnρ

n−1
0 R(ξ f )n−1] ,

E(ξ f ) = 1

2
V (ξ f )

2. (17)

For a given ξ f , Eqs. (14)-(16) with the boundary conditions in Eqs. (17) may be solved
numerically. ξ f is then determined by the condition that total energy is conserved. This
constraint, in terms of the scaling functions, is

2π
∫ ξ f

0
R(ξ)

[
V 2(ξ)

2
+ E(ξ)

]
ξ3dξ = 1. (18)
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Fig. 3 (Color online) The scaling functions a R(ξ), b V (ξ), c E(ξ), and d P(ξ) corresponding to density,
velocity, temperature and pressure respectively versus ξ obtained from hydrodynamic equations for ambient
number density (a–d) ρ0 = 0.15 and (e–h) ρ0 = 0.382. n refers to the number of terms that is retained in the
virial expansion (n = 1 is ideal gas). The insets show the plots on a log–log scale, accentuating the small ξ

behavior

To obtain the numerical solution to the set of ODEs [see Eqs. (14)–(16)], we convert this
boundary value problem to an initial value problem by choosing a numerical value of ξ f . The
value of ξ f is iterated till the solution satisfies Eq. (18) within a pre-determined accuracy.

The numerically obtained scaling functions are shown in Fig. 3 for ambient number
densities ρ0 = 0.15 and ρ0 = 0.382. The different curves correspond to the number of terms
that are retained in the virial EOS (n = 1 corresponds to the ideal gas EOS). Three features
may be deduced from the data. First is that the ambient number density ρ0 affects the scaling
functions. Second is that the data for n = 6 can hardly be distinguished from that for n = 10
for both ambient number densities. This means that, though the virial coefficients are known
only upto n = 10, they provide a very good approximation to the actual EOS, for the number
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(a) (b)

(c) (d)

Fig. 4 (Color online) The variation of the scaling functions a R(ξ), b V (ξ), c E(ξ) and d P(ξ) corresponding
to non-dimensionalised density, velocity, temperature and pressure [see Eq. (11)] with scaled distance ξ . The
data are shown for 2 different initial densities ρ0 = 0.15 and 0.382. For ρ0 = 0.15, the different times are
t = 100000, 150000, 200000, 250000, and for ρ = 0.382, t = 50000, 100000, 130000, 160000, as indicated
in (a). The solid lines correspond to predictions from the TvNS theory when the virial EOS is truncated at
n = 10. The data for R, P , and E are also shown on a logarithmic scale in Fig. 5

densities that we will be working with. Third, the exponents characterising the small ξ power
law behaviour of R, E , and P are robust and independent of the EOS.

4 Comparison of Hydrodynamics with Simulations

The scaling functions R(ξ), V (ξ), E(ξ), and P(ξ) obtained from event driven simulations
are shown in Fig. 4 for initial number densities 0.15 and 0.382. For each of the densities,
four different times are shown. The data for the different times collapse onto one curve when
plotted against ξ . The predictions from TvNS solution, when the virial EOS is truncated at
the tenth term, are shown by solid lines.

All the scaling functions, especially close to the shock front, dependon the ambient number
density ρ0. As ρ0 increases, the discontinuity at the shock front decreases. Most importantly,
the TvNS solution does not describe the simulation data well. For the scaling function R(ξ)

the theoretical and numerical answers do not match for all values of ξ . In particular, as shown
in Fig. 5a, the TvNS prediction for R(ξ) increases as a power law ξ2 for small ξ while the
numerically obtained scaling R(ξ) tends to a non-zero constant.
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Fig. 5 (Color online) The data in Fig. 4a, c and d are shown in logarithmic scale to emphasize the power-law
divergence for small ξ . The three panels show the variation of the scaling functions a R(ξ), b E(ξ) and c P(ξ)

with scaled distance ξ . The data are for 2 different initial densities ρ0 = 0.15 and 0.382. Each density has data
for four different times and the symbols are same as described in Fig. 4a. The black solid lines correspond to
the TvNS solution

The scaling function V (ξ), shown in Fig. 4b, increases linearly from zero, reaches a
maximum and then decreases to its value at the shock front. The TvNS solution captures
the simulation data close to the shock front. However, for smaller ξ , the TvNS solution for
V (ξ) tends to a non-zero constant, while the simulation results show that V (ξ) tends to
zero for small ξ . The scaling function E(ξ), which measures the square of the local velocity
fluctuations, is shown in Fig. 4c. There is only a weak dependence on the ambient number
density ρ0. From Fig. 5b, it can be seen that E diverges as a power law E(ξ) ∼ ξ−2 as
ξ → 0. However, the TvNS solution predicts that E diverges as E ∼ ξ−4 as ξ → 0, showing
a mismatch. The dependence of the scaled pressure on ξ is shown in Fig. 4d. Unlike the
other scaling functions, the TvNS solution is a good characterisation of the simulation data.
In particular, both the theoretical predictions as well as the numerical data diverge as ξ−2 as
ξ → 0 (see Fig. 5c). These results, showing a mismatch between the TvNS solution and the
numerical data, is quite similar to what was seen in three dimensions [40].

In summary, the TvNS solution fails to describewell the numerical data. There aremultiple
plausible reasons for the observed differences. Shock propagation is inherently a system out
of equilibrium, and thus the assumption of local equilibrium may be incorrect. Likewise,
viscous effects are ignored. In the following, we test these assumptions.

5 Verifying the Assumptions of the TvNS Theory

We now numerically check the different assumptions of the TvNS theory.

5.1 Equation of State

One of the key assumptions of the TvNS theory is an EOS relates the local pressure to the
local density and temperature. To test the assumption of EOS, we independently measure the
local thermodynamic quantities numerically and check whether they obey the hard sphere
virial EOS by numerically measuring the ratio

χ(n) = P(ξ)

E(ξ)R(ξ)
[
1 + ∑n

k=2 Bkρ
k−1
0 R(ξ)k−1

] , (19)
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Fig. 6 (Color online) The variation of χ(n) [see Eq. (19)] with ξ for n = 2, 4, 6, 8, 10. The data are for times
150000 and 250000 and for ambient number density ρ0 = 0.15. For large n, χ(n) converges to one

where n is the number of terms retained in the virial expansion [n = 1 corresponds to ideal
gas]. If χ ≈ 1 for increasing n, then we conclude that the local thermodynamic quantities
obey the virial EOS, and hence the assumption of EOS is justified.

The dependence of χ(n) on ξ is shown in Fig. 6 for n = 2, 4, 6, 8, 10 and for two different
times. For small n, χ(n) deviates from one near the shock front. However, quite remarkably,
as n increases,χ(n) converges to 1 for all ξ .We thus conclude that the assumption of existence
of EOS in the TvNS solution is justified.

5.2 Equipartition

We check whether the thermal energy is equally equipartitioned into the two degrees of
freedom by measuring the ratio

ζ = 〈δv2r 〉
〈δv2⊥〉 , (20)

where δvr and δv⊥ are the velocity fluctuations in the radial and transverse directions respec-
tively. When the thermal energy is equipartitioned, then ζ equals one. The variation of ζ

with ξ is shown in Fig 7 for different times. The data for different times collapse on to a
single curve. We find that ζ ≈ 1, except for very close to the shock front, thus showing
equipartition. However, near the shock front, ζ > 1, corresponding to excess thermal energy
in the radial direction.

5.3 Skewness and Kurtosis

The deviation from gaussianity of the probability distribution for velocity fluctuations can
be quantified by measuring the kurtosis κ and skewness S:

κr ,⊥ = 〈δv4r ,⊥〉
〈δv2r ,⊥〉2 , (21)
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Fig. 7 (Color online) The variation of ζ , the ratio of thermal energies in the radial and transverse directions
[see Eq. (20)] with the scaled distance ξ . The data is for four different times with keys as in Fig. 4a, for two
ambient densities ρ0 = 0.15 and 0.382. Away from the shock front, ζ ≈ 1

S = 〈δv3r 〉
〈δv2r 〉3/2

. (22)

For a gaussian distribution, the kurtosis is 3, and skewness is zero. Deviation from these
values show the non-gaussian behavior. The radial and transverse components of kurtosis
are denoted by κr and κ⊥ respectively and their variation with ξ is shown in Fig. 8a and b
respectively. While the data for different times collapse onto one curve, κr deviates from 3
near the shock center, showing a lack of local equilibrium. However, κ⊥ ≈ 3 for nearly all
ξ . In addition to this non-gaussian behaviour, we find that the distribution for the velocity
fluctuations is not symmetric with non-zero skewness S for values of ξ close to the shock
centre (see Fig. 8c). Thus, the distribution is clearly asymmetric.

To directly observe the skewness of the distribution, we calculate the probability distribu-
tion P(δvr , r , t) for the fluctuations of the radial velocity. Figure 8d shows the distribution
for a fixed time t and ξ = 0.33, corresponding to a region away from the shock front where
the skewness in Fig. 8c is non-zero. The distribution is compared with the fit to a gaussian.
Clearly, the distribution deviates from a gaussian, is asymmetric, and is skewed towards the
larger positive fluctuations.

5.4 Energy of Mean Flow

The total energy of the system can be divided into two parts: one is from the mean flow
velocity and the other is from the fluctuations about the mean flow velocity. The energy
associated with the mean flow, Eflow, is defined as

Eflow = 1

2

∫
ρr 〈vr 〉22πrdr , (23)

where ρr is themean density and 〈vr 〉 is themean radial velocity. Figure 9 shows the temporal
variation of Eflow. It can be seen that Eflow oscillates and reaches a steady value. The crossover
time is similar to the crossover time observed for the power-law growth of the number of
moving particles (see Fig. 2). The fact that Eflow reaches a steady time independent value
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(a) (b)

(c) (d)

Fig. 8 (Color online)The variationwith scaled distance ξ of a the kurtosisκr for the radial velocity fluctuations.
b the kurtosis κ⊥ for the velocity fluctuations in the θ direction and c skewness S for the radial velocity
fluctuations. The data are for ρ0 = 0.15 and ρ0 = 0.382 and for four different times with keys as in Fig. 4a.
d The distribution of the radial velocity fluctuations P(δv) measured at r = 375, t = 250000 and ρ0 = 0.15,
corresponding to ξ = 0.33. The black solid curve represents the best fit of the data to a gaussian distribution
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Fig. 9 (Color online) The variation of Eflow [see Eq. (23)] with time. The data are for ambient number density
ρ0 = 0.15

shows that ignoring the viscosity term in the Navier Stokes equation in the TvNS theory is a
reasonable approximation.
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6 Conclusion and Discussion

Themain aim of this paper was to resolve the contradiction between the conclusions of earlier
simulations in two [38] and three dimensions [40] of shock propagation in hard sphere gases
that are initially at rest. It had been found that in two dimensions the simulation data are
consistent with the predictions of hydrodynamics for low to medium densities except for a
small difference in the discontinuities at the shock front, and a slight discrepancy near the
shock center [38]. Contrary to this, in three dimensions the simulation data was inconsistent
with the predictions of hydrodynamcis atmost spatial locations, ranging from the shock center
to the shock front [40]. In this paper, we revisit the problem in two dimensions by performing
large scale event driven simulations. Conclusions from our simulations are inconsistent with
those from earlier simulations, but agrees qualitatively with the results of simulations in
three dimensions. In particular, we find that the simulation data in two dimensions are not
consistent with the TvNS solution. In particular, the exponents characterising the power law
behavior of both temperature and density near the shock center are different in theory and
simulations. The discrepancy with the simulations results in Ref. [38] could be because the
scaling regime has not been reached.

We also checked the different assumptions implicit in the TvNS theory within simulations
of the hard sphere gas in two dimensions. A key assumption is that of local equilibriumwhich
has the consequence that the local pressure, density and temperature are related through an
EOS. We find that the simulation data for all distances between the shock front and shock
centre are consistent with the EOS of the hard sphere gas, except for a small deviation near
the shock front (see Fig. 6). A stronger requirement of local equilibrium is that the velocity
fluctuations are gaussian. However, we find that distribution of the fluctuations of the radial
velocity is non-gaussian, in particular it has non-zero skewness and skewed towards positive
fluctuations. Whether this lack of local equilibrium is the cause of the discrepancy between
simulation and theory can be determined by studying a system where the local velocities are
reassigned at a constant rate consistent with a Maxwell–Boltzmann distribution with width
determined by the local temperature. This is a promising area for future study. It is also quite
possible that including the effects of heat conduction is important. While heat conduction
is irrelevant in the scaling limit, it imposes the boundary condition that the heat flux is zero
at the shock centre. This boundary condition results in zero temperature gradient, as seen
in the simulations. Whether including the effects of heat conduction in the hydrodynamic
equations will be able to reproduce the simulation results requires a detailed numerical
solution of the hydrodynamic equations, which is beyond the scope of this paper. After this
paper was submitted, shocks in one dimension were studied using particle based simulations
and numerical integration of the Navier Stokes Eqs. [41,46]. It was shown that including the
heat conduction term regularises the behaviour at the shock center, giving a good match with
hydrodynamics. Doing a similar study in two dimensions will bring out the role of boundary
conditions in comparing hydrodynamics with particle based simulations.

Acknowledgements The simulations were carried out on the supercomputer Nandadevi at The Institute of
Mathematical Sciences.
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