Microwave Assisted One-Pot Synthesis of Pyrrolo[2,1-*b*]thiazol-6ones from α-Aroyl Ketene-*N*,*S*-acetals

Paulson Mathew,^a* M. Prasidha,^a and C. V. Asokan^b

^aDepartment of Chemistry, St. Thomas' College, Thrissur, Kerala 680001, India ^bSchool of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India *E-mail: paulson.org@gmail.com Received August 31, 2009 DOI 10.1002/jhet.334 Published online 4 March 2010 in Wiley InterScience (www.interscience.wiley.com).

This article is dedicated to our research guide Dr. C. V. Asokan who died on February 3, 2007.

 α -Aroyl ketene-*N*,*S*-acetals **3** prepared by the reaction of β -oxothioamides **1** with phenacyl bromides **2**, underwent sequential cyclizations under microwave irradiation to afford pyrrolo[2,1-*b*]thiazol-6-ones **6** in good yields. A double cyclization takes place regioselectively in one pot and variety of functionalized pyrrolo[2,1-b]thiazol-6-ones were prepared by this protocol. The mode of cyclization under microwave condition is different from conventional heating.

J. Heterocyclic Chem., 47, 430 (2010).

INTRODUCTION

The structural diversity and biological importance exhibited by pyrrolothiazoles have made them attractive targets for synthesis [1]. Pyrrolo[2,1-b]thiazoles are known to display a wide range of biological activities such as antileukemic [2], platelet-activating factor antagonistic [3] and for prevention and treatment of various liver diseases [4]. The common strategy for their syntheses involves ring annelation of appropriately functionalized pyrroles [5,6] or thiazoles [7,8]. Other approaches are based on the cycloaddition reactions of thiazolium ylides [9], imidazo[2,1-b]thiazoles [10] or mesoionic thiazolo[3,2-c]oxazoles [2] with dimethyl acetylenedicarboxylate and related unsaturated acid derivatives. Recently, thiazadiene, an unsymmetrical polyhetropolyene, on sequential reaction with α -carbonyl bromide was converted into pyrrolo[2,1-b]thiazoles [11]. Ring contraction strategy is also used for constructing this heterobicyclic system [12]. All these reported methods needed multistep reaction sequences. Recently, microwave-assisted organic synthesis has attracted considerable attention due to enhanced reaction rates, high yields, improved selectivity, and cleaner products [13]. Herein, we report an efficient, microwave assisted, and environmentally benign one pot method for the preparation of pyrrolo[2,1-b]thiazol-6-ones 6 from easily accessible α -aroyl ketene-N,S-acetals 3. To the best of our knowledge, this is the first report on the direct transformation of an open chain system into pyrrolo[2,1-b]thiazole derivative using a one pot strategy.

Direct alkylation of thioamides using alkyl halide affords ketene-*N*,*S*-acetals which is widely used as a synthon in heterocyclic synthesis [14]. Recently we have explored the synthetic potential of α -aroyl ketene-*N*,*S*-acetals prepared by the alkylation of β -oxothioamides **1** for the synthesis of functionalised pyrroles [15]. α -Aroyl ketene-*N*,*S*-acetals were previously prepared in our laboratory as an intermediate for the synthesis of functionalized thiophenes *via* alkylation of thioamides using 1,2-bielectrophiles in presence of base [16].

RESULTS AND DISCUSSION

Initially, alkylation of thioamide **1** with one equiv. of a 1,2-bielectrophile-phenacyl bromide in the presence of K₂CO₃ (2 equiv.) as the base in acetone at room temperature was carried out expecting monoalkylation at sulphur followed by in situ cyclization to form thiazole 4, which could be further transformed into the pyrrolothiazoles. However, we isolated only the monoalkylated α -aroyl ketene-N,S-acetals **3** in nearly quantitative yields (Scheme 1, Table 1). The unexpected complex pattern of peaks observed in the ¹H NMR (360 MHz) spectrum of 3 is apparently due to the diastereotopic nature of the methylene protons. For example, in 3a, ethyl moiety showed a triplet at δ 1.27 and two sets of doublets each at δ 3.40 and 3.50 (J = 12). Another doublet of doublet appeared at 3.79 (1H, J = 12 Hz) and 4.08 (1H, J = 12Hz) due to SCH_2 moiety. The NCH₂ moiety showed a

Scheme 1

multiplet at δ 4.18–4.26 ppm. By recording the ¹H NMR spectrum at higher frequency (500 MHz), we further confirmed these sets of peaks as doublet of doublet rather than peaks arising from the possible geometrical isomeric forms.

Next, taking 3a as a model substrate, its cyclization to thiazole 4a was attempted. Initial experiments using K₂CO₃ as the base in acetone under reflux conditions failed to afford thiazole. Use of a strong base like KOH in ethanol or NaH in DMF afforded only intractable mixture of products. Further studies using acid catalysts showed that the ketene-N.S-acetals 3 can be easily transformed into thiazoles 4. Thus, a solution of the ketene-*N*,*S*-acetal **3a** in acetic acid was heated at 70°C for 4 h; the thiazole 4a was formed quantitatively. Using a similar protocol the thiazole 4b was prepared (Table 2). Alternatively, when the alkylation of the thioamide 1a was attempted in the presence of excess of K₂CO₃ (8 equiv.) in DMF, thiazole 4a was formed in good yields. The same strategy was used for the preparation of thiazoles 4b-f (Table 2).

can be easily transformed into pyrrolo[2,1-b]thiazoles, we attempted their pyrrole ring annulation studies. Similar cyclization has been previously reported by our group for the synthesis of pyrroles from ketene-N,S-acetals using Vilsmeier Haack reagent (POCl₃/DMF) [15]. Tverdokhlebov et al. used the same reagent for the synthesis of pyrrolo[2,1-b]thiazoles from thiazoles [17]. Attempts using base catalysts or Vilsmeier Haack reagent failed to afford pyrrolothiazoles. However, the thiazole 4a or 4b after heating under reflux in acetic acid for a period of 15 h, we observed the formation of pyrrolo[2,1-b]thiazoles 5a and 5b in 48% and 42% yields respectively (Scheme 1). To our surprise, other thiazoles (4c-4f) even after refluxing in acetic acid for 24 h, it was possible to isolate only the unreacted starting material. Failure of the above cyclization was apparently due to the unfavorable orientation of the aroyl moiety in the thiazole 4.

Since the thiazole 4 containing structural units that

The observation that the N,S-acetal **3a** underwent facile cyclization in presence of acetic acid prompted us to irradiate a solution of **3a** in acetic acid under

Table 1							
Ketene-N,S-acetals 3	prepared	from	thioamide	1.			

 Table 2

 Thiazoles 4 prepared from thioamide 1 or from ketene-N,S-acetal 3.

	D ²	N. 11 (C)					
Product	K	R	Yield (%)	Product	\mathbf{P}^1	\mathbf{P}^2	Vield (%)
3a	CH ₃	Н	92	Tioduct	K	K	Tield (70)
3b	OCH ₃	Cl	88	4a	Н	Н	88
3c	Н	Cl	92	4b	Br	Н	87
3d	Br	Cl	94	4c	Cl	CH_3	85
3e	OCH ₃	Н	85	4d	Cl	Н	86
3f	Br	Н	94	4e	OCH ₃	CH_3	80
3g	Н	Н	96	4f	Н	CH ₃	82

 Table 3

 Pyrrolo[2,1-b]thiazol-6-ones 6 prepared from ketene-N,S-acetal 3.

Product	R^1	R^2	Yield (%)	
6a	CH ₃	Н	81	
6b	OCH ₃	Cl	85	
6c	Н	Cl	82	
6d	OCH ₃	Н	80	
6d	Br	Н	76	
6f	Н	Н	84	

microwave. Thus, by dissolving 3a in acetic acid followed by microwave irradiation for 15 min at 150°C in a microwave synthesizer, transformation to the corresponding pyrrolo[2,1-b]thiazole **6a** was observed in 81% yield. Using a similar protocol we have prepared other pyrrolothiazoles (6b-f) in good yields (Table 3). Electron withdrawing or donating substituents have little effect on the mode of cyclization or on the overall yield of the pyrrolothiazoles 6 formed. When we reduced only the reaction time to 10 min, the reaction was incomplete and could be possible to isolate a mixture of the intermediate thiazole 4a and the pyrrolothiazole 6a in a ratio 1 : 3. In an independent experiment, transformation of 4a to 6f was observed under microwave heating. It is interesting to note that the mode of cyclization during pyrrole ring annelation step in conventional heating is different from that in microwave conditions. Thus, under microwave conditions pyrrolothiazoles 6 were formed which is structurally different form the pyrrolothiazoles 5, formed during conventional heating. This is apparently due to the fact that under microwave conditions, the geometry of the exocyclic double bond present in the initially formed thiazole 4 was affected to a lesser extend and the ethyl carboxylate functionality underwent rapid conformational changes favoring the regioselective formation of pyrrolothiazoles 6. While in conventional heating the reverse is true leading to the formation of pyrrolothiazole 5.

In summary, we have developed a convenient and efficient one-pot procedure for the synthesis of a variety of pyrrolo[2,1-b]thiazoles from less expensive as well as easily accessible ketene-*N*,*S*-acetals under microwave conditions in a regioselective and efficient manner. The reaction is very fast and the product can be easily separated from the reaction medium by dilution using water followed by filtration.

EXPERIMENTAL

Thioamide 1 was prepared as reported [15(b)]. Microwaveassisted reactions were done in a multimode microwave reactor (Biotage InitiatorTM). Melting points were obtained on a Buchi-530 melting point apparatus and are uncorrected. ¹H and 13 C NMR spectra were recorded on a Bruker DRX-300 MHz or AM-360 MHz spectrometer in CDCl₃. Chemical shifts are expressed in parts per million. Coupling constants *J* are given in Hertz. Mass spectra-EIMS, FAB, were obtained on a Finngen-Mat 312, Jeol SX 102/Da-600 instruments respectively. Elemental analyses were recorded on an elementar vario EL III analyzer.

General procedure for the synthesis of α -aroyl ketene-N,S-acetals (3). A suspension of the thioamide 1 (10 mmol) and anhyd K₂CO₃ (20 mmol) in dry acetone (30 mL) was refluxed with stirring for 30 min. The mixture was cooled and phenacyl bromide 2 (10 mmol) was added followed by stirring at room temperature for 4 h. When the reaction was completed (TLC), the mixture was poured into ice-cold water and extracted using CH₂Cl₂ (2 × 50 mL). The organic layer was washed with water (2 × 100 mL), dried using anhyd Na₂SO₄ and evaporated. The crude product thus obtained was purified by column chromatography over silica gel using hexane: ethyl acetate (7 : 3) as eluent afforded the α -aroyl ketene-*N*,*S*-acetals **3a–g** (Table 1).

Ethyl[3-(4-methylphenyl)-3-oxo-1-(2-oxo-2-phenyl-ethylsul-fanyl)-propenylamino]acetate (*3a*). White solid; mp 143–145°C. ¹H NMR (360 MHz, CDCl₃): δ 1.27 (t, 3H, J = 7.2 Hz, CH₂CH₃), 2.39 (s, 3H, ArCH₃), 3.40 (1H, J = 12 Hz, CH₂CH₃), 3.50 (1H, J = 12 Hz, CH₂CH₃), 3.79 (1H, J = 12 Hz, CH₂CH₃), 3.50 (1H, J = 12 Hz, SCH₂), 4.18–4.26 (m, 2H, NCH₂), 6.09 (s, 1H, vinylic), 7.21 (d, 2H, J = 8 Hz, 2H, ArH), 7. 39 (m, 3H, ArH), 7.59 (m, 2H, ArH), 7.77 (d, 2H, J = 8 Hz, ArH) ppm. ¹³C NMR (90 MHz, CDCl₃): δ 14.5, 22.2, 48.1, 52.5, 62.3, 97.4, 126.4, 129.3, 129.7, 130.0, 133.7, 135.0, 141.9, 145.8, 156.5, 168.8, 195.9, 196.1. EIMS: *m/z* (%) 397.16 (M⁺, 12), 379.16 (100), 306.15 (38), 246.14 (45), and 119.1 (70). Anal. Calcd. for C₂₂H₂₃NO₄S (397.13): C, 66.48; H, 5.83; N, 3.52. Found: C, 66.35; H, 5.87; N, 3.58.

Ethyl[*1-[2-(4-chlorophenyl-2-oxo-ethylsulfanyl]-3-(4-methoxy-phenyl)-3-oxo-propenylamino]acetate (3b).* White solid; mp 95–97°C. ¹H NMR (360 MHz, CDCl₃): δ 1.26 (t, 3H, J = 7.2 Hz, CH₂CH₃), 3.36 (d, 1H, J = 12 Hz, CH₂CH₃), 3.43 (1H, J = 12 Hz, CH₂CH₃), 3.85 (d, 1H, J = 18 Hz, SCH₂), 3.84 (s, 3H, ArOCH₃), 4.05 (d, 1H, J = 18 Hz, SCH₂), 4.16–4.30 (m, 2H, NCH₂), 5.04 (bs, 1H, NH), 6.06 (s, 1H, vinylic), 6.91 (d, 2H, J = 8 Hz, 2H, ArH), 7.38 (d, 3H, J = 8 Hz, ArH), 7.55 (d, 2H, J = 8 Hz, ArH), 7.86 (d, 2H, J = 8 Hz, ArH) ppm. MS (FAB): m/z 448 (M⁺ + H). Anal. Calcd. for C₂₂H₂₂ClNO₅S (447.09): C, 58.99; H, 4.95; N, 3.13. Found: C, 58.76; H, 4.90; N, 3.17.

Ethyl[*1-[2-(4-chloro-phenyl-2-oxo-ethylsulfanyl]-3-oxo-3-phenyl propenylamino/acetate (3c).* White solid. mp 98–100°C. ¹H NMR (360 MHz, CDCl₃): δ 1.28 (t, 3H, J = 7.2 Hz, CH₂CH₃), 3.39 (d, 1H, J = 10 Hz, CH₂CH₃), 3.47 (d, 1H, J =10 Hz, CH₂CH₃), 3.77 (d, 1H, J = 18 Hz, SCH₂), 4.07 (d, 1H, J = 18 Hz, SCH₂), 4.15–4.32 (m, 2 H, NCH₂), 4.09 (bs, 1H, NH), 6.10 (s, 1H, vinylic), 7.39–7.45 (m, 3H, ArH), 7. 56 (d, J =8Hz, 2H, ArH), 7.89 (d, 2H, J = 7 Hz, ArH) ppm. ¹³C NMR (90 MHz, CDCl₃): δ 14.5, 44.8, 48.0, 63.1, 90.6, 96.2, 127.7, 128.5, 128.7, 129.1, 129.4, 131.8, 135.5, 139.3, 139.7, 166.1, 170.7, 187.7 ppm. MS (FAB): *m/z* 418 (M⁺ + H). Anal. Calcd. for C₂₁H₂₀CINO₄S (417.08): C, 60.35; H, 4.82; N, 3.35. Found: C, 60.49; H, 4.91; N, 3.28.

Ethyl[3-(4-bromophenyl)-1-[2-(4-chloro-phenyl)-2-oxo-ethylsulfanyl]-3-oxo propenylamino]acetate (3d). White solid. mp 147–149°C. ¹H NMR (360 MHz, CDCl₃): δ 1.28 (t, 3H, J = 10 Hz, CH₂CH₃), 3.43 (q, 2H, J = 10 Hz, CH₂CH₃), 3.78 (d, 1H, J = 18 Hz, SCH₂), 4.08 (d, 1H, J = 18 Hz, SCH₂), 4.16– 4.32 (m, 2 H, NCH₂), 4.99 (bs, 1H, NH), 6.10 (s, 1H, vinylic), 7.40 (d, J = 10 Hz, 2H, ArH), 7.55–7.57 (m, 4 H, ArH), 7.88 (d, 2H, J = 10 Hz, ArH) ppm. ¹³C NMR (90 MHz, CDCl₃): δ 14.2, 49.0, 62.4, 95.9, 106.9, 125.1, 128.5, 129.4, 130.7, 131.5, 136.2, 138.3, 139.8, 164.3, 166.9, 181.8, 185.7 ppm. EIMS: m/z (%) 497.1 (M⁺ + 2, 14), 479.1 (82), 406.1 (48), 324.2 (22), 240.2 (25), 183.1 (82) and 139.1 (100). Anal. Calcd. for C₂₁H₁₉BrClNO₄S (494.99): C, 50.77; H, 3.85; N, 2.82. Found: C, 50.65; H, 3.89; N, 2.76.

Ethyl[3-(4-methoxyphenyl)-3-oxo-1-(2-oxo-2-phenyl-ethyl-sulfanyl)-propenylamino]acetate (3e). Pale yellow glass. ¹H NMR (360 MHz, CDCl₃): δ 1.26 (t, 3H, J = 7.2 Hz, CH₂CH₃), 3.38 (d, 1H, J = 14 Hz, CH₂CH₃), 3.49 (1H, J = 14 Hz, CH₂CH₃), 3.79 (d,1H, J = 18 Hz, SCH₂), 3.84 (s, 3H, ArOCH₃ + 1H, SCH₂), 4.06 (d, 1H, J = 18 Hz, SCH₂), 3.84 (s, 3H, ArOCH₃ + 1H, SCH₂), 4.06 (d, 1H, J = 18 Hz, SCH₂), 4.15–4.28 (m, 2H, NCH₂), 4.50 (bs, 1H, NH), 6.07 (s, 1H, vinylic), 6.92 (d, 2H, J = 9 Hz, 2H, ArH), 7. 41 (m, 3H, ArH), 7.61 (d, 2H, J = 7 Hz, ArH), 7.87 (d, 2H, J = 9 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ 14.1, 44.3, 47.6, 55.3, 62.4, 89.6, 96.1, 113.4, 126.5, 128.7, 129.2, 132.1, 140.3, 162.1, 165.2, 170.3, 186.1, 187.1 ppm. EIMS (CHCl₃/CH₃CN+H⁺): *m/z* (%) 414.1, (M⁺ + H 12), 396.2 (100), 366.2 (18), 248.1 (35). Anal. Calcd. for C₂₂H₂₃NO₅S (413.13): C, 63.90; H, 5.61; N, 3.39. Found: C, 63.82; H, 5.67; N, 3.43.

Ethyl[3-(4-bromophenyl)-3-oxo-1-(2-oxo-2-phenyl-ethylsulfanyl) propenylaminoJacetate (3f). White solid. mp 98–99°C. ¹H NMR (360 MHz, CDCl₃): δ 1.27 (t, 3H, J = 7.2 Hz, CH₂CH₃), 3.43 (d, 1H, J = 10 Hz, CH₂CH₃), 3.53 (d, 1H, J =10 Hz, CH₂CH₃), 3.81 (d, 1H, J = 18 Hz, SCH₂), 4.08 (d, 1H, J = 18 Hz, SCH₂), 4.20–4.30 (m, 2 H, NCH₂), 4.51 (s, 1H, NH), 6.03 (s, 1H, vinylic), 7.31 (d, 2H, J = 7 Hz, 2H, ArH), 7. 43 (m, 3H, ArH), 7.60 (m, 2H, ArH), 7.82 (d, 2H, J = 7Hz, ArH) ppm. ¹³C NMR (90 MHz, CDCl₃): δ 14.5, 44.8, 53.8, 62.7, 96.8, 126.9, 129.0, 129.3, 130.5, 131.9, 132.5, 138.6, 140.5, 166.9, 170.6, 182.6, 186.2 ppm. MS (FAB): *m/z* 462 (M⁺ + H). Anal. Calcd. for C₂₁H₂₀BrNO₄S (461.03): C, 54.55; H, 4.36; N, 3.03. Found: C, 54.62; H, 4.29; N, 3.06.

Ethyl[3-oxo-1-(2-oxo-2-phenyl-ethylsulfanyl)-3-phenyl-propenylamino]acetate (3g). White solid. mp 118–120°C. ¹H NMR (360 MHz, CDCl₃): δ 1.29 (t, 3H, J = 7.2 Hz, CH₂CH₃), 3.42 (1H, J = 10 Hz, CH₂CH₃), 3.53 (1H, J = 10 Hz, CH₂CH₃), 3.81 (1H, J = 18 Hz, SCH₂), 4.11 (1H, J = 18 Hz, SCH₂), 4.18–4.32 (m, 2 H, NCH₂), 4.82 (s, 1H, NH), 6.11 (s, 1H, vinylic), 7.40–7.48 (m, 6H, ArH), 7.61 (d, 2H, ArH), 7.90 (d, 2H, J = 8 Hz, ArH) ppm. ¹³C NMR (90 MHz, CDCl₃): δ 14.5, 44.8, 48.1, 62.9, 90.4, 97.6, 126.9, 127.7, 128.7, 129.3, 129.4, 131.7, 139.8, 140.6, 166.4, 170.8, 187.6 ppm. MS (FAB): m/z 385 (M⁺ + H). Anal. Calcd. for C₂₁H₂₁NO₄S (383.12): C, 65.78; H, 5.52; N, 3.65. Found: C, 65.86; H, 5.59; N, 3.60.

General procedure for the synthesis of thiazoles (4). Method (a): From ketene-N,S-acetal 3: To a suspension of the ketene-N,S-acetal 3a or 3b (10 mmol) in glacial acetic acid (10 mL) was heated at 70°C with stirring for 4 h. The reaction mixture was cooled, diluted with water (50 mL), and the precipitated product was filtered, recrystallized from ethanol to afford the thiazole 4a or 4b in moderate yields.

Method (b): From thioamide 1: To a suspension of the thioamide 1 (10 mmol) in anhyd DMF (30 mL) was added K_2CO_3 (80 mmol) followed by phenacyl bromide 2 (10 mmol). The mixture was stirred at room temperature for 4 h then at 100°C for 2 h. It was then cooled, poured into icecold water and extracted using ethyl acetate (2×50 mL). The organic layer was washed with water (2×100 mL), dried using anhyd Na₂SO₄ and evaporated. The crude product thus obtained was purified by column chromatography over silica gel using hexane: ethyl acetate (7 : 3) as eluent to give **4a–f** (Table 2).

Ethyl 2-{2-[(Z)-oxo(phenyl)ethylidene]-4-phenyl-1,3-thiazol-3-yl]acetate (4a). Pale yellow needles; mp. 130–131°C. ¹H NMR (300 MHz, CDCl₃) δ 1.27 (t, 3H, J = 7 Hz, CH₂CH₃), 4.26 (q, 2H, J = 7 Hz, CH₂CH₃), 4.50 (s, 1H, NCH₂), 6.32 (s, 1H, vinylic), 6.40 (s, 1H, tzol CH), δ 7.42 (m, 6H, ArH), δ 7.94 (m, 4H, ArH). ¹³C NMR (75.5 MHz, CDCl₃) δ 14.1 (CH₂CH₃), 48.9 (NCH₂), 62.2 (CH₂CH₃), 86.4 (tzol CH), 106.0 (vinylic), 126.8 (C4, tzol CH), 164.0 (C2, tzol), 128.1, 128.9, 129.3, 129.7, 129.9, 130.4, 139.6, 140.9 (ArC), δ 167.1 and 183.1 (carbonyl). EIMS: m/z (%) 365 (M⁺, 82), 336 (41), 292 (51), 275 (15), 214 (33), 186 (36), 147 (54), 134 (58), and 105 (100). Anal. Calcd. for C₂₁H₁₉NO₃S (365.45): C, 69.02; H, 5.24; N, 3.83. Found: C, 68.72; H, 5.36; N, 3.57.

Ethyl 2-{2-[(Z)-(4-bromophenyl)(oxo)ethylidene]-4-phenyl-1,3-thiazol-3-yl/acetate (4b). Pale yellow crystalline solid; mp 118–120°C. ¹H NMR (300 MHz, CDCl₃) δ 1.19 (t, 3H, J = 7Hz, CH₂CH₃), 4.20 (q, 2H, J = 7 Hz, CH₂CH₃), 4.53 (s, 1H, NCH₂), 6.46 (s, 1H, vinylic), 7.19 (s, 1H, tzol CH), 7.30–7.47 (m, 7H, ArH), 7.75 (d, 2H, J = 8 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃) δ 14.2 (CH₂CH₃), 49.1 (NCH₂), 62.3 (CH₂CH₃), 86.2 (tzol CH), 106.4 (vinylic), 125.0 (C4, tzol), 164.5 (C2, tzol), 128.6, 128.3, 129.1, 129.5, 129.9, 131.4, 138.7, and 141.2 (ArC), 167.09 and δ 181.82 (carbonyl) ppm. EIMS: *m/z* (%) 443 (M⁺, 50), 445 (M⁺ + 2, 51), 411 (32), 260 (21), 216 (22), 185 (100), 157 (74), 134 (74), and 105 (51). Anal. Calcd. for C₂₁H₁₈BrNO₃S (444.34): C, 56.76; H, 4.08; N, 3.15. Found: C, 56.52; H, 4.16; N, 3.02.

Ethyl 2-[2-[(Z)-(4-chlorophenyl)(oxo)ethylidene]-4-(4-methylphenyl)-1,3-thiazol-3-yl]acetate (4c). White crystalline solid; mp 148–149°C. ¹H NMR (300 MHz, CDCl₃) δ 1.27 (t, 3H, J = 7 Hz, CH₂CH₃), 2.41 (s, 3H, CH₃), 4.28 (q, 2H, J = 7.2 Hz, CH₂CH₃), 4.51 (s, 1H, NH CH₂), 6.25 (s, 1H, vinylic), 6.40 (s, 1H, tzol CH), 7.27 (m, 4H, ArH), 7.37 (d, 2H, J = 8 Hz, ArH), 7.86 (d, 2H, J = 8 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃) 14.2 (CH₂CH₃), 49.1 (NCH₂), 62.2 (CH₂CH₃), 86.3 (tzol CH), 106.0 (vinylic), 126.4 (C4, tzol), 164.5 (C2 tzol), 127.0, 128.4, 129.4, 129.8, 136.4, 138.3, 140.2, 141.3 (ArC), 167.2, and δ 181.6 (carbonyl) ppm. EIMS: m/z (%) 415 (M⁺ + 2, 23), 413 (M⁺, 72), 396 (41), 340 (38), 263 (15), 200 (26), 188 (34) and 139 (100). Anal. Calcd. for C₂₂H₂₀ClNO₃S (413.92): C, 63.84; H, 4.87; N, 3.38. Found: C, 64.08; H, 4.56; N, 3.24.

Ethyl 2-{2-[(Z)-(4-chlorophenyl)(oxo)ethylidene]-4-phenyl-1,3-thiazol-3-yl]acetate (4d). White crystalline solid; mp 110– 111°C. ¹H NMR (300 MHz, CDCl₃) δ 1.28 (t, 3H, J = 7 Hz, CH₂CH₃), 4.27 (q, 2H, J = 7 Hz, CH₂CH₃), 4.51 (s, 1H, NCH₂), 6.26 (s, 1H, vinylic), 6.44 (s, 1H, tzol CH), 7.37–7.48 (m, 7H, ArH), 7.87 (d, 2H, J = 8 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃), 14.2 (CH₂CH₃), 48.1 (NCH₂), 62.3 (CH₂CH₃), 86.4 (tzol CH), 106.0 (vinylic), 126.8 (C4 tzol) 164.0 (C2 tzol), 127.7, 128.4, 129.2, 129.9, 136.4, 138.3, 141.2 (ArC), 167.1, and δ 181.6 (carbonyl) ppm. EIMS: *m/z* (%) 401, (M⁺ +2, 28), 399 (M⁺, 85), 382 (27), 326 (34), 298 (24), 249 (21), 183 (53), 141 (54), 139 (100), and 111 (100). Anal. Calcd. for $C_{21}H_{18}CINO_3S$ (399.89): C, 63.07; H, 4.54; N, 3.50. Found: C, 62.74; H, 4.78; N, 3.45.

Ethvl 2-{2-[(Z)-(4-methoxyphenyl)(oxo)ethylidene]-4-(4methylphenyl)-1,3-thiazol-3-yl acetate (4e). Pale yellow glass. ¹H NMR (300 MHz, CDCl₃) δ 1.28 (t, 3H, J = 7 Hz, CH_2CH_3), 2.17 (s, 3H, CH_3), 4.27 (q, 2H, J = 7 Hz, CH₂CH₃), 4.69 (s, 1H, NCH₂), 6.46 ppm (s, 1H, vinylic), 6.48 ppm (s, 1H, tzol CH), 6.77 (d, 2H, J = 8 Hz, ArH), 6.90 (d, 2H, J = 8 Hz, ArH), 7.04 (d, 2H, J = 8 Hz, ArH), 7.28 (d, 2H, J = 8 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃) 14.2 (CH₂CH₃), 21.3 (CH₃), 49.1 (NCH₂), 55.3 (OCH₃), 62.2 (CH₂CH₃), 86.1 (tzol CH), 105.5 (vinylic) 127.3 (C4 tzol), 161.6 (C2 tzol), 113.5, 128.8, 129.4, 129.7, 132.7, 139.9, 140.9, and 163.8 (ArC), 167.4 and 182.5 (carbonyl) ppm. EIMS: m/z (%) 409 (M⁺, 78), 336 (32), 306 (15), 228 (25), 200 (16), 172 (11), 135 (100), and 121 (92). Anal. Calcd. for C23H23NO4S (409.50): C, 67.46; H, 5.66; N, 3.42. Found: C, 67.32; H, 5.73; N, 3.48.

Ethyl 2-[4-(4-methylphenyl)-2-[(Z)-oxo(phenyl)ethylidene]-*I*,3-thiazol-3-yl/acetate (4f). Pale yellow crystalline solid; mp 128–129°C. ¹H NMR (300 MHz, CDCl₃) δ 1.28 (t, 3H, J = 7Hz, CH₂CH₃), 2.41 (s, 3H, CH₃), 4.27 (q, 2H, J = 7 Hz, CH₂CH₃), 4.51 (s, 1H, NCH₂), 6.26–7.95 (m, 10H, ArH + tzol H). ¹³C NMR (75.5 MHz, CDCl₃) δ 14.1 (CH₂CH₃), 21.3 (CH₃), 48.9 (NCH₂), 62.4 (CH₂CH₃), 90.0 (tzol CH), 105.8 (vinylic), 126.5 (C4 tzol), 165.9 (C2 tzol), 127.3, 128.3, 129.3, 129.7, 130.4, 131.2, 137.4, and 138.9 (ArC), 170.3 and 187.1 (carbonyl). EIMS: m/z (%) 379 (M⁺, 84), 362 (31), 306 (51), 278 (18), 232 (13), 188 (16), 147 (34), 119 (58) and 105 (100). Anal. Calcd for C₂₂H₂₁NO₃S (379.47): C, 69.63; H, 5.58; N, 3.69. Found: C, 69.32; H, 5.67; N, 3.76.

General procedure for the synthesis of pyrrolothiazoles (5). A suspension of the thiazole 3 (10 mmol) in glacial acetic acid (10 mL) was refluxed with stirring for 15 h. The mixture was cooled and poured into ice cold water and extracted using CHCl₃ (2 × 50 mL). The organic layer was washed with water (2 × 50 mL) and dried using anhyd Na₂SO₄. The solvent was evaporated and the crude product thus obtained was purified by column chromatography over silica gel using hexane: ethyl acetate as eluent (4 : 1) to afford 5a or 5b.

Ethyl 3,6-diphenylpyrrolo[2,1-*b*]-[1,3]*thiazole-5-carboxylate* (*5a*). Pale yellow glass. ¹H NMR (300 MHz, CDCl₃) δ 0.65 (t, 3H, J = 7 Hz, CH₂CH₃), 3.45 (q, 2H, J = 7 Hz, CH₂CH₃), 6.34 (s, 1H pyrrole CH), 6.52 (s, 1H, tzol CH(7.07–8.07 (m, 10H, ArH) ppm. ¹³C NMR (75.5 MHz, CDCl₃) δ 12.6, 59.0, 99.6 (tzol CH), 109.7, 112.3, 125.3, 126.2, 127.4, 127.5, 127.6, 128.8, 129.1, 131.7, 132.7, 135.6, 137.7 (ArH), 159.48. EIMS: *m*/*z* (%) 347 (M⁺, 48), 302 (24), 275(100), 241 (18), 215 (15), 202 (12), 172 (15), 145 (20), and 102 (27). Anal. Calcd. for C₂₁H₁₇NO₂S (347.43): C, 72.60; H, 4.93; N, 4.03. Found: C, 72.43; H, 4.86; N, 4.14.

Ethyl 3-(4-methylphenyl)-6-phenylpyrrolo[2,1-b][1,3]thiazole-5-carboxylate (5b). Pale yellow glass.¹H NMR (300 MHz, CDCl3) δ 0.68 (t, 3H, J = 7 Hz, CH₂CH₃), δ 3.50 (q, 2H, J = 7 Hz, CH₂CH₃), δ 2.30 (s, 3H, CH₃), δ 6.33 (s, 1H, pyrrole CH), δ 6.49 (s, 1H, tzol CH), δ 7.13–7.53 (m, 9H, ArH) ppm. ¹³C NMR (75.5 MHz, CDCl3) δ 14.0, 21.7, δ 60.4, 101.0 (tzol CH). 110.6, 126.7, 127.6, 128.0, 128.9, 129.6, 130.2, 130.5, 134.0, 135.8, 137.8, 137.2, 139.0, 160.9. EIMS: m/z (%) 361 (M⁺, 47), 316 (22), 289 (100), 273 (14), 210 (8), 145 (15), and 115 (31). Anal. Calcd. for C₂₂H₁₉NO₂S (361.46): C, 73.10; H, 5.30; N, 3.88. Found: C, 73.28; H, 5.43; N, 3.74. General procedure for the synthesis of pyrrole[2,1-*b*]thiazol-6-ones (6). To a 10 mL glass vial equipped with a small magnetic stirring bar, α -aroyl ketene-*N*,*S*-acetal 2 (1.0 mmol) was added followed by glacial acetic acid (3 mL). The mixture was then irradiated in a microwave synthesizer for 15 min at 150°C. After completion of the reaction, the vial was cooled to 50°C by air jet cooling before it was opened. It was then diluted with water (20 mL), and the precipitated product was collected by filtration, washed with cold water and recrystallized from ethyl acetate to afford **6a–f** (Table 3).

7-(4-Methyl-benzoyl)-3-phenyl-pyrrolo[2,1-*b*]*thiazol-6-one* (*6a*). White solid; mp 206–207°C. ¹H NMR (360 MHz, CDCl₃): δ 2.40 (s, 3H ArCH₃), 4.62 (s, 2H, NCH₂), 6.80 (s, 1H tzol), 7.53 (s, 7H, ArH), 8.05 (d, 2H, J = 7 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ 22.1, 59.3, 109.2, 127.7, 128.4, 128.9, 129.6, 129.9, 130.8, 135.5, 141.5, 142.7, 179.8, 185.4, 185.9. HRMS: calcd. for C₂₀H₁₅NO₂S 333.0823, found 333.0809.

3-(4-Chloro-phenyl)-7-(4-methoxy-benzoyl)pyrrolo[2,1-b]thiazol-6-one (6b). White solid; mp 211–213°C. ¹H NMR (360 MHz, CDCl₃): δ 3.84 (s, 3H, OCH₃), 4.93 (s, 2H, NCH₂), 6.99–7.01 (d, 2H, J = 7.2 Hz, ArH), 7.47 (s, 1H tzol), 7.61–7.63 (d, 2H, J = 7.2 Hz, ArH), 7.79–7.81 (d, 2H, J = 7.2 Hz, ArH), 8.12–8.14 (d, 2H, J = 7.2 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ 54.8, 59.9, 108.5, 127.6, 129.8, 131.0, 131.5, 135.1, 139.9, 162.4, 178.5, 183.0, 186.2. EIMS (THF/HCOOH): m/z (%) 384.1, M⁺ + H 100), 316.4 (56), 288.4 (78), 244.3 (12), 166.2 (18). Anal. Calcd. for C₂₀H₁₄CINO₃S (383.04): C, 62.58; H, 3.68; N, 3.65. Found: C, 62.69; H, 3.74; N, 3.58.

7-Benzoyl-3-(4-chloro-phenyl)-pyrrolo[2,1-b]thiazol-6-one (6c). White solid. mp 200–202°C. ¹H NMR (360 MHz, CDCl₃): δ 4.93 (s, 2H, NCH₂), 7.46–7.48 (m, 7H, ArH), 6.50 (s, 1H tzol), 7.61–7.63 (d, 2H, J = 7.2 Hz, ArH), 7.79–7.81 (d, 2H, J = 7.2 Hz, ArH), 7.97–7.99 (d, 2H, J = 7.2 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ 59.7, 108.2, 127.4, 127.8, 128.2, 129.1, 129.4, 129.7, 130.1, 135.0, 138.5, 139.8, 178.0, 184.1, 186.3. MS (FAB): m/z 354 (M⁺ + H). Anal. Calcd. for C₁₉H₁₂ClNO₂S (353.03): C, 64.50; H, 3.42; N, 3.96. Found: C, 64.41; H, 3.38; N, 3.99.

7-(4-Methoxy-benzoyl)-3-phenyl-pyrrolo[2,1-b]thiazol-6-one (6d). White solid. mp 216–218 °C. ¹H NMR (360 MHz, CDCl₃): δ 3.78 (s, 3H, OCH₃), 4.88 (s, 2H, NCH₂), 6.93–6.95 (d, 2H, J = 7.2 Hz, ArH), 7.36 (s, 1H tzol), 7.47 (s, 3H, ArH), 7.70 (s, 2H, ArH), 8.07–8.09 (d, 2H, J = 7.2 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ 55.7, 59.7, 108.3, 127.9, 128.9, 129.3, 129.6, 130.9, 131.2, 131.4, 140.9, 162.2, 178.3, 182.8, 186.1. MS (FAB): m/z 350 (M⁺ + H). Anal. Calcd. for C₂₀H₁₅NO₃S (349.08): C, 68.75; H, 4.33; N, 4.01. Found: C, 68.62; H, 4.38; N, 4.07.

7-(4-Bromo-benzoyl)-3-phenyl-pyrrolo[2,1-b]thiazol-6-one (*6e*). White solid; mp 222–224°C. ¹H NMR (360 MHz, CDCl₃): δ 4.63 (s, 2H, NCH₂), 6.84 (s, 1H tzol), 7.54–7.60 (m, 7H, ArH), 8.04 (d, 2H, J = 7.2 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ 59.3, 109.2, 109.4, 126.9, 127.8, 128.3, 129.9, 129.9, 130.9, 131.4, 136.9, 141.6, 179.9, 184.6, 185.4. MS (FAB): m/z 398 (M⁺ + H), 400 (M⁺ + H + 2). Anal. Calcd. for C₁₉H₁₂BrNO₂S (396.98): C, 57.30; H, 3.04; N, 3.52. Found: C, 57.18; H, 3.10; N, 3.55.

7-Benzoyl-3-phenyl-pyrrolo[2,1-b]thiazol-6-one (6f). White solid; mp 216–217°C. ¹H NMR (360 MHz, CDCl₃): δ 4.62 (s, 2H, NCH₂), 6.80 (s, 1H tzol), 7.45–7.53 (m, 8H, ArH), 8.12 (d, 2H, J = 7.2 Hz, ArH). ¹³C NMR (90 MHz, CDCl₃): δ

March 2010

59.3, 109.2, 109.3, 127.7, 128.2, 128.4, 129.5, 129.9, 130.8, 132.2, 138.2, 141.6, 179.8, 185.4, 186.0. MS (FAB): m/z 320 (M⁺ + H). Anal. Calcd. for C₁₉H₁₃NO₂S (319.07): C, 71.45; H, 4.10; N, 4.39. Found: C, 71.58; H, 4.16; N, 4.32.

Acknowledgments. P.M. thank SAIF, CDRI, Lucknow, India for providing spectral and analytical data and the Kerala State Council for Science Engineering and Technology (KSCSTE), Kerala, India for financial support.

REFERENCES AND NOTES

[1] Tverdokhlebov, A. V. Heterocycles 2007, 71, 761.

[2] Lalezari, I.; Schwartz, E. L. J Med Chem 1988, 31, 1427.

[3] Davidsen, S. K.; Summers, J. B.; Sweeny, D. J.; Holms, J. H.; Albert, D. H.; Carrera, G. M.; Tapang, P.; Magoc, T. J.; Conway, R. G.; Rhein, D. A. Bioorg Med Chem Lett 1995, 5, 2913.

[4] Hasegawa, M.; Nakayama, A.; Yokohama, S.; Hosokami, T.; Kurebayashi, Y.; Ikeda, T.; Shimoto, Y.; Ide, S.; Honda, Y.; Suzuki, N. Chem Pharm Bull 1995, 43, 1125.

[5] Hamid, A.; Oulyadi, H.; Daïch, A. Tetrahedron 2006, 62, 6398.

[6] Shevchenko, N. E.; Nenajdenko, V. G.; Balenkova, E. S. Synthesis 2003, 1191.

[7] Song, Y. K.; Lee, K.-J. Synthesis 2007, 3037.

[8] (a) Tverdokhlebov, A. V.; Andrushko, A. P.; Tolmachev, A. A. Synthesis 2006, 1433; (b) Tverdokhlebov, A. V.; Andrushko, A.

P.; Resnyanska, E. V.; Tolmachev, A. A. Synthesis 2004, 2317.

[9] Berry, C. R.; Zificsak, C. A.; Gibbs, A. C.; Hlasta, D. J. Org Lett 2007, 9, 4099.

[10] Abe, N.; Nishiwaki, T.; Komoto, N. Bull Chem Soc Jpn 1980, 53, 3308.

[11] Landreau, C.; Janvier, P.; Julienne, K.; Meslin, J. C.; Deniaud, D. Tetrahedron 2006, 62, 9226.

[12] Geyer, A.; Agoston, K. Tetrahedron Lett 2004, 45, 1895.

[13] (a) Kappe, C. O. Angew Chem Int Ed Engl 2004, 43, 6250;
(b) Kappe, C. O. Chem Soc Rev 2008, 37, 1127; (c) Kappe, C. O.;
Dallinger, D.; Murphee, S. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments and Protocols; Wiley-VCH: Weinheim, Germany, 2009.

[14] (a) Chakrabarti, S.; Panda, K.; Ila, H.; Junjappa, H. Synlett 2005, 309; (b) Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J Org Chem 2007, 72, 1246; (c) Venkatesh, C.; Singh, B.; Mahata, P. K.; Ila, H.; Junjappa, H. Org Lett 2005, 7, 2169.

[15] (a) Mathew, P.; Asokan, C. V. Tetrahedron Lett 2005, 46, 475; (b) Mathew, P.; Asokan, C. V. Tetrahedron 2006, 62, 1708.

[16] (a) Suma, S.; Ushakumari, N. K.; Asokan, C. V. Phosphorus Sulfur Silicon Relat Elem 1997, 131, 161; (b) Samuel, R.; Chandran, P.; Retnamma, S.; Sasikala, K. A.; Sreedevi, N. K.; Anabha, E. R.; Asokan, C. V. Tetrahedron 2008, 64, 5944.

[17] Tverdokhlebov, A. V.; Resnyanska, E. V.; Tolmachev, A. A.; Andrushko, A. P. Synthesis 2003, 2632.