dc.contributor.author | Joseph, Jeena | |
dc.contributor.author | Tony, Sonitta | |
dc.date.accessioned | 2025-01-21T06:24:10Z | |
dc.date.available | 2025-01-21T06:24:10Z | |
dc.date.issued | 2023-12 | |
dc.identifier.citation | Gnedenko Forum Volume 18 No 4 | en_US |
dc.identifier.uri | https://www.gnedenko.net/Journal/2023/042023/RTA_4_2023-51.pdf | |
dc.identifier.uri | http://starc.stthomas.ac.in:8080/xmlui/xmlui/handle/123456789/406 | |
dc.description.abstract | In this article, we propose a new class of distributions defined by a quantile function, which is the sum of the quantile functions of the Power and Weibull distributions. Various distributional properties and reliability characteristics of the class are discussed. To examine the usefulness of the model, the model is applied to a real life datasets. Parameters are estimated using maximum likelihood estimation technique. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Gnedenko Forum | en_US |
dc.subject | Power distribution | en_US |
dc.subject | Weibull distribution | en_US |
dc.subject | L-moments | en_US |
dc.subject | Hazard quantile function | en_US |
dc.subject | Mean residual quantile function | en_US |
dc.subject | Residual variance quantile function | en_US |
dc.subject | Reversed hazard quantile function. | en_US |
dc.title | POWER WEIBULL QUANTILE FUNCTION AND IT’S RELIABILITY ANALYSIS | en_US |
dc.type | Article | en_US |