DSpace Repository

HARRIS PROCESSES

Show simple item record

dc.contributor.author Sebastian, Sherly
dc.contributor.author Jos, M. K
dc.contributor.author Sandhya, E
dc.contributor.author Raju, N
dc.date.accessioned 2025-02-12T06:20:30Z
dc.date.available 2025-02-12T06:20:30Z
dc.date.issued 2005-11
dc.identifier.citation ResearchGate en_US
dc.identifier.uri : https://www.researchgate.net/publication/2123391
dc.identifier.uri http://starc.stthomas.ac.in:8080/xmlui/xmlui/handle/123456789/449
dc.description.abstract In this paper, we develop two stochastic models where the variable under consideration follows Harris distribution. The mean and variance of the processes are derived and the processes are shown to be non-stationary. In the second model, starting with a Poisson process, an alternate way of obtaining Harris process is introduced. en_US
dc.language.iso en en_US
dc.publisher International Journal of Agricultural and Statistical Sciences en_US
dc.subject Harris law en_US
dc.subject negative binomial distribution en_US
dc.subject probability generating function en_US
dc.subject Poisson process en_US
dc.subject Yule-Furry process en_US
dc.subject mixture en_US
dc.title HARRIS PROCESSES en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account