| dc.contributor.author | Karthika, S | |
| dc.contributor.author | Viji, M | |
| dc.date.accessioned | 2022-02-18T04:15:00Z | |
| dc.date.available | 2022-02-18T04:15:00Z | |
| dc.date.issued | 2021-06-10 | |
| dc.identifier.citation | TY - JOUR AU - Karthika, S. AU - Viji, M. PY - 2021 DA - 2021/03/01 TI - Unit elements in the path algebra of an acyclic quiver JO - Indian Journal of Pure and Applied Mathematics SP - 138 EP - 140 VL - 52 IS - 1 AB | en_US |
| dc.identifier.other | 10.1007/s13226-021-00069-w | |
| dc.identifier.uri | http://starc.stthomas.ac.in:8080/xmlui/xmlui/handle/123456789/62 | |
| dc.description.abstract | We investigate the algebraic properties of a particular non- commutative algebra, the path algebra, associated with a quiver. Quiver was initially introduced by Peter Gabriel. In this paper, we obtain a characterization for the invertibility of an element in the path algebra of an acyclic quiver. The study is an extension of the invertibility condition in a unique path quiver to acyclic quivers. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.subject | Acyclic quiver | en_US |
| dc.subject | Path algebra | en_US |
| dc.subject | Unit element | en_US |
| dc.title | Unit elements in the path algebra of an acyclic quiver | en_US |
| dc.type | Article | en_US |