DSpace Repository

Multidimensional outlier detection and robust estimation using Sn covariance

Show simple item record

dc.contributor.author Kunjunni, Sajana O
dc.contributor.author Abraham, Sajesh T
dc.date.accessioned 2022-02-19T10:27:12Z
dc.date.available 2022-02-19T10:27:12Z
dc.date.issued 2020-02-17
dc.identifier.citation Sajana O. Kunjunni & Sajesh T. Abraham (2020): Multidimensional outlier detection and robust estimation using Sn covariance, Communications in Statistics - Simulation and Computation en_US
dc.identifier.issn 0361-0918
dc.identifier.other 10.1080/03610918.2020.1725820
dc.identifier.uri http://starc.stthomas.ac.in:8080/xmlui/xmlui/handle/123456789/93
dc.description.abstract This article presents a robust method for detecting multiple outliers from multidimensional data using robust Mahalanobis distance. Initial scatter matrix for robust Mahalanobis distance is constructed using a robust estimator of covariance (SnCov) established from a robust scale estimator Sn and casewise median are chosen to be the location vector. The performance of the proposed method is evaluated using the results of simulated samples. This outlier detection method is compared with some well-known methods available in the current literature. The application of the proposed method in real-life data is also executed in this article. en_US
dc.language.iso en en_US
dc.publisher Taylor & Francis Online en_US
dc.subject Location en_US
dc.subject Mahalanobis distance en_US
dc.subject Multivariate en_US
dc.subject Outlier detection en_US
dc.subject Robust estimation en_US
dc.subject Scatter en_US
dc.title Multidimensional outlier detection and robust estimation using Sn covariance en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account